![]() |
degeneracy_detection package from degenerate-detection repodegeneracy_detection |
Package Summary
Tags | No category tags. |
Version | 0.0.0 |
License | BSD |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/jisehua/degenerate-detection.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2025-02-21 |
Dev Status | UNMAINTAINED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- koide
Authors
Degenerate Detection
About
This project presents a point-to-distribution based approach for detecting LiDAR SLAM degeneracy. A novel degeneracy factor is introduced, leveraging local geometric model information to accurately characterize the algorithm’s degeneracy state. This method not only effectively reduces noise interference and minimizes false detections but also enhances overall robustness.
Video
https://github.com/jisehua/Degenerate-Detection/assets/89381045/50744cab-6248-4e52-8b5d-8fa28f6f5884
https://github.com/user-attachments/assets/78d88d44-d583-4cd4-b9da-3bb843d12d64
Related Publications:
Sehua Ji, Weinan Chen, Zerong Su, Yisheng Guan, Jiehao Li, Hong Zhang, Haifei Zhu. A Point-to-distribution Degeneracy Detection Factor for LiDAR SLAM using Local Geometric Models, [C]//2024 IEEE International Conference on Robotics and Automation(ICRA), pp. 12283-12289, 2024.
Weinan Chen (Supervisor), Sehua Ji, Yisheng Guan, Haifei Zhu, Hong Zhang, P2d-DO: Degeneracy Optimization for LiDAR SLAM with Point-to-Distribution Detection Factors, IEEE Robotics and Automation Letters, vol. 10, no. 2, pp. 1489-1496, Feb. 2025.
If you use our method in an academic work, please cite:
@article{Ji2024APD,
title={A Point-to-distribution Degeneracy Detection Factor for LiDAR SLAM using Local Geometric Models},
author={Sehua Ji, Weinan Chen, Zerong Su, Yisheng Guan, Jiehao Li, Hong Zhang, Haifei Zhu},
journal={2024 IEEE International Conference on Robotics and Automation (ICRA)},
pages={12283--12289},
year={2024},
pages={12283-12289},
}
@article{Chen2025P2dDO,
title={P2d-DO: Degeneracy Optimization for LiDAR SLAM With Point-to-Distribution Detection Factors},
author={Weinan Chen, Sehua Ji, Xubin Lin, Zhi-xin Yang, Wenzheng Chi, Yisheng Guan, Haifei Zhu, Hong Zhang},
journal={IEEE Robotics and Automation Letters},
year={2025},
no.={2},
volume={10},
pages={1489-1496}
}
How to use
- Build the project in the ROS workspace
mkdir -p catkin_ws/src && cd catkin_ws/src
git clone
cd catkin_ws
catkin_make
- Related parameter
* star_launch:
/resolution_value # Initialize voxel size.
/velodyne_points # LiDAR frame ID.
/save_path # The path where the test results are saved.
* voxel_grid_covariance_omp_impl.hpp:
bool pub_mark; # Switch for voxel visualization on rviz.(If set to true, the playback speed of the dataset can be reduced for better presentation, e.g. x0.5.)
- Run
roslaunch degeneracy_detection start.launch
Notic
The voxel segmentation method mentioned in the paper has not yet been fully organized. Therefore, part of the code is being open-sourced first.
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
catkin | |
ament_cmake_auto | |
pcl_ros | |
roscpp |
System Dependencies
Name |
---|
libpcl-all-dev |