![]() |
pointcloud_to_rangeimage package from pointcompress3d repopointcloud_to_rangeimage snnrmse velodyne velodyne_driver velodyne_laserscan velodyne_msgs velodyne_pcl velodyne_pointcloud |
Package Summary
Tags | No category tags. |
Version | 0.1.0 |
License | MIT |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/pointcompress3d/pointcompress3d.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2024-07-18 |
Dev Status | UNMAINTAINED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Yuchen Tao
- Till Beemelmanns
Authors
- Yuchen Tao
- Till Beemelmanns
RNN Based Point Cloud Compression
The idea is to losslessly convert a point cloud to range, azimuth and intensity images, then compress them using image compression methods.
Input Point Cloud | Decompressed Point Cloud |
---|---|
![]() |
![]() |
Configuration
Initial settings of the Velodyne LiDAR sensor and parameters of the application can be set int the configuration file pointcloud_to_rangeimage.yaml. Default setting is based on Velodyne VLP-32C model.
point_cloud_to_rangeimage
Parameter | Description | Example |
---|---|---|
vlp_rpm | RPM of the sensor | 600.0 |
num_layers | Number of laser layers in the sensor | 32 |
firing_circle | Time for one firing circle | 0.000055296 |
elevation_offsets | Elevation angle corresponding to each laser layer in ascending order | see default setting |
azimuth_offsets | Azimuth offset corresponding to each laser layer with the same order as elevation_offsets | see default setting |
record_images | Whether to record transformed images in a local folder | false |
record_path | Path to store lidar compression dataset | /home/rosuser/catkin_ws/dataset/ |
threshold | Maximum range of point clouds | 200 |
compression_method
Parameter | Description | Example
———— | ————- | ————-
compression_method | Compression method: additive_lstm
, oneshot_lstm
, additive_gru
, image_compression
| additive_lstm
rnn_compression
Parameter | Description | Example
———— | ————- | ————-
weights_path | Path to the model weights stored as .hdf5
| /catkin_ws/models/additive_lstm_32b_32iter.hdf5
bottleneck | Bottleneck size of the model | 32
num_iters | Number of iterations for compression | 32
image_compression
Parameter | Description | Example
———— | ————- | ————-
image_compression_method | Select image compression method png
or jpg
| jpg
show_debug_prints | Print debug prints during execution true
or false
| false
Usage
Dataset generation: Transform point clouds to images and store them in local folders.
- Specify
record_path
to store the images in the configuration file. The path should contain three sub-folders named azimuth, range and intensity. Set parameterrecord_images
totrue
. - Run
roslaunch pointcloud_to_rangeimage compression.launch
. - In another terminal, play the rosbags to be transformed.
The node pointcloud_to_rangeimage_node.cpp subscribes to the topic
/velodyne_points
with message typesensor_msgs/PointCloud2
. The images will be stored in the three sub-folders. Raw Velodyne packet data is also supported with the help of the Velodyne driver, by including the launch file VLP-32C_driver.launch. Manual configuration regarding the sensor setup is needed. - Optional: the dataset can be further splitted into train/val/test datasets using the library split-folders.
pip install split-folders
python
import splitfolders
splitfolders.ratio('path/to/parent/folder', output="path/to/output/folder", seed=1337, ratio=(.8, 0.1,0.1))
Online JPEG compression:
- Set parameter
record_images
tofalse
. - Set
compression_method
toìmage_compression
and choose desired compression quality here. See OpenCV imwrite flags. - Run
roslaunch pointcloud_to_rangeimage compression.launch
. Path to the rosbag can be modified in the launch file.
Online RNN compression:
- Set parameter
record_images
tofalse
. - Set
compression_method
toadditive_lstm
oroneshot_lstm
oradditive_gru
- Set the parameters
weights_path
andbottleneck
according to the picked model. Setnum_iters
to control the compressed message size. - Run
roslaunch pointcloud_to_rangeimage compression.launch
. Path to the rosbag can be modified in the launch file.
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
roscpp | |
rospy | |
sensors_msgs | |
ros_bridge | |
dynamic_reconfigure | |
message_generation | |
image_transport | |
velodyne_pcl | |
catkin | |
message_runtime |
System Dependencies
Dependant Packages
Launch files
- launch/compression.launch
- launch/VLP-32C_driver.launch
- -*- mode: XML -*-
-
- calibration [default: $(find velodyne_pointcloud)/params/VeloView-VLP-32C.yaml]
- device_ip [default: ]
- frame_id [default: velodyne]
- manager [default: $(arg frame_id)_nodelet_manager_ping]
- max_range [default: 200.0]
- min_range [default: 1.0]
- pcap [default: ]
- port [default: 2368]
- read_fast [default: false]
- read_once [default: false]
- repeat_delay [default: 0.0]
- rpm [default: 600.0]
- gps_time [default: false]
- cut_angle [default: -0.01]
- timestamp_first_packet [default: false]
- laserscan_ring [default: -1]
- laserscan_resolution [default: 0.007]
- organize_cloud [default: true]