No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

robotics_fundamentals_ros_gazebo package from robotics_fundamentals_ros_gazebo repo

robotics_fundamentals_ros_gazebo

Package Summary

Tags No category tags.
Version 1.0.0
License BSD
Build type AMENT_PYTHON
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/andreasbihlmaier/robotics_fundamentals_ros_gazebo.git
VCS Type git
VCS Version main
Last Updated 2023-11-23
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

ROSCon DE 2023 Learning Robotics Fundamentals with ROS 2 and modern Gazebo

Additional Links

No additional links.

Maintainers

  • ahb

Authors

No additional authors.

ROSCon DE 2023 talk “Learning Robotics Fundamentals with ROS 2 and modern Gazebo”

Slides available here

Setup:

  • Follow the official installation instructions at https://docs.ros.org/en/humble/Installation/Ubuntu-Install-Debians.html.
  • In the step “Install ROS 2 packages”, install the packages ros-humble-desktop and ros-dev-tools.
  • In addition, install the following packages
  sudo apt install \
    python3-colcon-common-extensions \
    ros-humble-ign-ros2-control \
    ros-humble-plotjuggler-ros \
    ros-humble-ros2-control \
    ros-humble-ros2-controllers \
    ros-humble-ros-gz-sim-demos \
    ros-humble-ros-ign-gazebo \
    ros-humble-rqt-joint-trajectory-controller \
    ros-humble-rqt-tf-tree
  

M1:

  • Start (modern) Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="empty.sdf -r"
  
  • Spawn a simple mobile robot in Gazebo:
  ros2 run ros_gz_sim create -file $(pwd)/vehicle_blue.sdf -z 0.325
  
  • Create a bridge between ROS and Gazebo:
  ros2 run ros_gz_bridge parameter_bridge \
    '/model/vehicle_blue/cmd_vel@geometry_msgs/msg/Twist]gz.msgs.Twist' \
    '/model/vehicle_blue/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V'
  
  • Start PlotJuggler
  ros2 run plotjuggler plotjuggler
  
  • Add plots:
    • ROS2 Topic Subscriber -> Select /model/vehicle_blue/pose
    • Drag and drop /model/vehicle_blue/pose/empty/vehicle_blue/translation/x from Timeseries List to the plot area
    • Split the plot vertical twice
    • Add Custom Series -> Input timeseries: Same x as above; Function library: backward_difference_derivative; New name: v; Create New Timeseries
    • Drag and drop v from Custom Series to the middle plot and to the bottom plot
    • Apply filter to data on the bottom plot -> Derivative
    • Now the top plot shows the position x, the middle plot shows the velocity v, and the bottom plot shows the acceleration a.
  • Command the mobile robot to move forward:
  ros2 topic pub --once /model/vehicle_blue/cmd_vel geometry_msgs/msg/Twist '
  linear:
    x: 0.1
    y: 0.0
    z: 0.0
  angular:
    x: 0.0
    y: 0.0
    z: 0.0'
  

P1:

  • Start Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="$(pwd)/falling_world.sdf"
  
  • Create ROS-Gazebo bridge:
  ros2 run ros_gz_bridge parameter_bridge '/model/sphere/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V'
  
  • Record pose of falling sphere:
  ros2 bag record /model/sphere/pose
  
  • Unpause Gazebo
  • Wait for sphere to hit the ground. Stop recording.
  • Open bag file in PlotJuggler

P2:

  • Start Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="$(pwd)/slippery_slope.sdf"
  
  • Create ROS-Gazebo bridge:
  ros2 run ros_gz_bridge parameter_bridge \
    '/model/sphere/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V' \
    '/model/cylinder/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V'
  
  • Record pose of falling sphere:
  ros2 bag record /model/sphere/pose /model/cylinder/pose
  
  • Unpause Gazebo
  • Wait for both objects to have rolled down the inclined plane. Stop recording.
  • Open bag file in PlotJuggler

R1:

  • Start Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="$(pwd)/stiff_one_armed_bandit.sdf"
  
  • Create ROS-Gazebo bridge:
  ros2 run ros_gz_bridge parameter_bridge \
    '/world/stiff_one_armed_bandit/model/double_pendulum_with_base/joint_state@sensor_msgs/msg/JointState[gz.msgs.Model' \
    '/model/double_pendulum_with_base/joint/upper_joint/cmd_force@std_msgs/msg/Float64]gz.msgs.Double' \
    '/model/double_pendulum_with_base/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V'
  
  • Unpause Gazebo
  • Add /world/stiff_one_armed_bandit/model/double_pendulum_with_base/joint_state/lower_joint/position to PlotJuggler
  • Add /model/double_pendulum_with_base/pose/double_pendulum_with_base/double_pendulum_with_base/lower_link/translation/y and z as XY plot to PlotJuggler

R2:

  • Start Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="$(pwd)/damped_stiff_one_armed_bandit.sdf -r"
  
  • Create ROS-Gazebo bridge:
  ros2 run ros_gz_bridge parameter_bridge \
    '/world/damped_stiff_one_armed_bandit/model/double_pendulum_with_base/joint_state@sensor_msgs/msg/JointState[gz.msgs.Model' \
    '/model/double_pendulum_with_base/joint/upper_joint/cmd_force@std_msgs/msg/Float64]gz.msgs.Double' \
    '/model/double_pendulum_with_base/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V'
  
  • Setup plots in PlotJuggler, similar to R1.
  • Set torque on upper_joint:
  ros2 topic pub --once /model/double_pendulum_with_base/joint/upper_joint/cmd_force std_msgs/msg/Float64 'data: 3.0'
  sleep 3
  ros2 topic pub --once /model/double_pendulum_with_base/joint/upper_joint/cmd_force std_msgs/msg/Float64 'data: 0.0'
  
  • Set friction coefficient of the upper_joint to zero and set the damping coefficient to 0.5:
  <joint name="upper_joint" type="revolute">
    <parent>base</parent>
    <child>upper_link</child>
    <axis>
      <xyz>1.0 0 0</xyz>
      <dynamics>
        <damping>0.5</damping>
        <!-- <friction>1.0</friction> -->
      </dynamics>
    </axis>
  </joint>
  
  • Restart Gazebo and repeat the torque command. Observe the difference in the plots.

R3:

  • Start Gazebo:
  ros2 launch ros_gz_sim gz_sim.launch.py gz_args:="$(pwd)/damped_stiff_one_armed_bandit.sdf -r"
  
  • Create ROS-Gazebo bridge:
  ros2 run ros_gz_bridge parameter_bridge \
    '/world/one_armed_bandit/model/double_pendulum_with_base/joint_state@sensor_msgs/msg/JointState[gz.msgs.Model' \
    '/model/double_pendulum_with_base/joint/upper_joint/cmd_force@std_msgs/msg/Float64]gz.msgs.Double' \
    '/model/double_pendulum_with_base/pose@tf2_msgs/msg/TFMessage[gz.msgs.Pose_V' \
    '/joint_lower_joint_cmd_pos@std_msgs/msg/Float64]gz.msgs.Double'
  
  • Setup plots in PlotJuggler, similar to R1.
  • Set torque on upper_joint:
  ros2 topic pub --once /model/double_pendulum_with_base/joint/upper_joint/cmd_force std_msgs/msg/Float64 'data: 50.0'
  
  • Set joint position on lower_joint:
  ros2 topic pub --once /joint_lower_joint_cmd_pos std_msgs/msg/Float64 'data: 0.0'
  
  • Change the joint position of lower_joint and observe the resulting settling position of the pendulum.
  • You can also vary the lower_joint position more continuously:
  for q in $(seq 0 0.1 6.28); do
    ros2 topic pub --once /joint_lower_joint_cmd_pos std_msgs/msg/Float64 "data: ${q}"
  done
  

C1:

  • Start Gazebo along with a simulated UR5e robot:
  ros2 launch ur_simulation_ignition ur_sim_control.launch.py
  
  • Plot the robot’s joint efforts via the /joint_states topic.
  • Command trajectories to the simulated robot:
  ros2 launch ur_bringup test_joint_trajectory_controller.launch.py
  
CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Package Dependencies

System Dependencies

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged robotics_fundamentals_ros_gazebo at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.