bno055 repository

Repository Summary

Checkout URI https://github.com/flynneva/bno055.git
VCS Type git
VCS Version main
Last Updated 2024-02-17
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
bno055 0.5.0

README

A BNO05 ROS2 Package

Description

A ROS2 driver for the sensor IMU Bosch BNO055.

This repo was based off of Michael Drwiega’s work on the Bosch IMU Driver for ROS 1


Wiring Guide

Selecting Connection Type

The default mode is I2C. To select UART mode connect the 3.3V pin to the PS1 pin.

CP2104 USB-to-UART Bridge

When using a CP2104 USB-to-UART Bridge:

BNO055 CP2104 Friend
Vin 5V
GND GND
SDA RXD
SCL TXD

**NOTE: on the CP2104 the pins above refer to the FTDI pins at the opposite end from the USB connector


ROS Node Parameters

To configure with your own settings please adjust the node parameter file and pass it as an argument when starting the node:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

UART Connection

  • connection_type=uart: Defines UART as sensor connection type; default=’uart’
  • uart_port: The UART port to use; default=’/dev/ttyUSB0’
  • uart_baudrate: The baud rate to use; default=115200
  • uart_timeout: The timeout for UART transmissions in seconds to use; default=0.1

I2C Connection

  • connection_type=i2c: Defines I2C as sensor connection type; default=’uart’
  • i2c_bus: The integer I2C bus number to use; default=0
  • i2c_address: The hexadecimal I2C address to use; default=0x28

Sensor Configuration

  • frame_id: coordinate frame id of sensor default=’bno055’
  • baudrate: baudrate of sensor default=115200
  • data_query_frequency: frequency (HZ) to read and publish data from sensor; default=100 Hz
  • calib_status_frequency: frequency (HZ) to read and publish calibration status data from sensor; default=0.1 Hz
  • placement_axis_remap: The sensor placement configuration (Axis remapping) defines the position and orientation of the sensor mount. See Bosch BNO055 datasheet section “Axis Remap” for valid positions: “P0”, “P1” (default), “P2”, “P3”, “P4”, “P5”, “P6”, “P7”.

ROS Topic Prefix

  • ros_topic_prefix: ROS topic prefix to be used. Will be prepended to the default topic names (see below). Default=”bno055/”

Calibration

The current calibration values can be requested via the calibration_request service (this puts the imu into CONFIGMODE for a short time):

ros2 service call /bno055/calibration_request example_interfaces/srv/Trigger


ROS Topics

ROS topics published by this ROS2 Node:

While bno055 is the default ROS topic prefix, it can be configured by following the directions above.


Development Workspace Setup

On a Remote Device

Setup of a ROS2 workspace & IDE for a remote device (for example Raspberry Pi):

Clone & Build

Create a ROS2 workspace on your remote device - for instance ~/ros2_ws

Make sure you sourced your ROS2 installation (underlay).

Then clone the project into your workspace’s src directory:

cd ~/ros2_ws/src
git clone https://github.com/flynneva/bno055.git

Perform a build of your workspace

cd ~/ros2_ws
colcon build

Integrate in your IDE

In order to work with the sources in your remote workspace and to integrate them in your IDE, use sshfs:

sudo apt-get install sshfs
sudo modprobe fuse

Create a IDE project directory and mount the remote ROS2 workspace:

mkdir -p ~/projects/bno055/ros2_ws
sshfs ubuntu@192.168.2.153:~/ros2_ws ~/projects/bno055/ros2_ws

Create a new project in your IDE from existing sources in ~/projects/bno055/ros2_ws. You can now manipulate the remote ROS2 workspace using your local IDE (including git operations).

Running the ROS2 node

Run the bno055 ROS2 node with default parameters:

# source your local workspace (overlay) in addition to the ROS2 sourcing (underlay):
source ~/ros2_ws/install/setup.sh
# run the node:
ros2 run bno055 bno055

Run with customized parameter file:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

Run launch file:

ros2 launch bno055 bno055.launch.py

Performing flake8 Linting

To perform code linting with flake8, just perform:

cd ~/ros2_ws/src/bno055
ament_flake8

See www.flake8rules.com for more detailed information about flake8 rules.

Note: We take advantage of flake8’s noqa mechanisim to selectively ignore some errors. Just search for # noqa: in the source code to find them.

CONTRIBUTING

Any contribution that you make to this repository will be under the 3-Clause BSD License, as dictated by that license.

Please add your name to the provided AUTHORS file after making a contribution.


Repository Summary

Checkout URI https://github.com/flynneva/bno055.git
VCS Type git
VCS Version main
Last Updated 2024-02-17
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
bno055 0.5.0

README

A BNO05 ROS2 Package

Description

A ROS2 driver for the sensor IMU Bosch BNO055.

This repo was based off of Michael Drwiega’s work on the Bosch IMU Driver for ROS 1


Wiring Guide

Selecting Connection Type

The default mode is I2C. To select UART mode connect the 3.3V pin to the PS1 pin.

CP2104 USB-to-UART Bridge

When using a CP2104 USB-to-UART Bridge:

BNO055 CP2104 Friend
Vin 5V
GND GND
SDA RXD
SCL TXD

**NOTE: on the CP2104 the pins above refer to the FTDI pins at the opposite end from the USB connector


ROS Node Parameters

To configure with your own settings please adjust the node parameter file and pass it as an argument when starting the node:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

UART Connection

  • connection_type=uart: Defines UART as sensor connection type; default=’uart’
  • uart_port: The UART port to use; default=’/dev/ttyUSB0’
  • uart_baudrate: The baud rate to use; default=115200
  • uart_timeout: The timeout for UART transmissions in seconds to use; default=0.1

I2C Connection

  • connection_type=i2c: Defines I2C as sensor connection type; default=’uart’
  • i2c_bus: The integer I2C bus number to use; default=0
  • i2c_address: The hexadecimal I2C address to use; default=0x28

Sensor Configuration

  • frame_id: coordinate frame id of sensor default=’bno055’
  • baudrate: baudrate of sensor default=115200
  • data_query_frequency: frequency (HZ) to read and publish data from sensor; default=100 Hz
  • calib_status_frequency: frequency (HZ) to read and publish calibration status data from sensor; default=0.1 Hz
  • placement_axis_remap: The sensor placement configuration (Axis remapping) defines the position and orientation of the sensor mount. See Bosch BNO055 datasheet section “Axis Remap” for valid positions: “P0”, “P1” (default), “P2”, “P3”, “P4”, “P5”, “P6”, “P7”.

ROS Topic Prefix

  • ros_topic_prefix: ROS topic prefix to be used. Will be prepended to the default topic names (see below). Default=”bno055/”

Calibration

The current calibration values can be requested via the calibration_request service (this puts the imu into CONFIGMODE for a short time):

ros2 service call /bno055/calibration_request example_interfaces/srv/Trigger


ROS Topics

ROS topics published by this ROS2 Node:

While bno055 is the default ROS topic prefix, it can be configured by following the directions above.


Development Workspace Setup

On a Remote Device

Setup of a ROS2 workspace & IDE for a remote device (for example Raspberry Pi):

Clone & Build

Create a ROS2 workspace on your remote device - for instance ~/ros2_ws

Make sure you sourced your ROS2 installation (underlay).

Then clone the project into your workspace’s src directory:

cd ~/ros2_ws/src
git clone https://github.com/flynneva/bno055.git

Perform a build of your workspace

cd ~/ros2_ws
colcon build

Integrate in your IDE

In order to work with the sources in your remote workspace and to integrate them in your IDE, use sshfs:

sudo apt-get install sshfs
sudo modprobe fuse

Create a IDE project directory and mount the remote ROS2 workspace:

mkdir -p ~/projects/bno055/ros2_ws
sshfs ubuntu@192.168.2.153:~/ros2_ws ~/projects/bno055/ros2_ws

Create a new project in your IDE from existing sources in ~/projects/bno055/ros2_ws. You can now manipulate the remote ROS2 workspace using your local IDE (including git operations).

Running the ROS2 node

Run the bno055 ROS2 node with default parameters:

# source your local workspace (overlay) in addition to the ROS2 sourcing (underlay):
source ~/ros2_ws/install/setup.sh
# run the node:
ros2 run bno055 bno055

Run with customized parameter file:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

Run launch file:

ros2 launch bno055 bno055.launch.py

Performing flake8 Linting

To perform code linting with flake8, just perform:

cd ~/ros2_ws/src/bno055
ament_flake8

See www.flake8rules.com for more detailed information about flake8 rules.

Note: We take advantage of flake8’s noqa mechanisim to selectively ignore some errors. Just search for # noqa: in the source code to find them.

CONTRIBUTING

Any contribution that you make to this repository will be under the 3-Clause BSD License, as dictated by that license.

Please add your name to the provided AUTHORS file after making a contribution.


Repository Summary

Checkout URI https://github.com/flynneva/bno055.git
VCS Type git
VCS Version main
Last Updated 2024-02-17
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
bno055 0.5.0

README

A BNO05 ROS2 Package

Description

A ROS2 driver for the sensor IMU Bosch BNO055.

This repo was based off of Michael Drwiega’s work on the Bosch IMU Driver for ROS 1


Wiring Guide

Selecting Connection Type

The default mode is I2C. To select UART mode connect the 3.3V pin to the PS1 pin.

CP2104 USB-to-UART Bridge

When using a CP2104 USB-to-UART Bridge:

BNO055 CP2104 Friend
Vin 5V
GND GND
SDA RXD
SCL TXD

**NOTE: on the CP2104 the pins above refer to the FTDI pins at the opposite end from the USB connector


ROS Node Parameters

To configure with your own settings please adjust the node parameter file and pass it as an argument when starting the node:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

UART Connection

  • connection_type=uart: Defines UART as sensor connection type; default=’uart’
  • uart_port: The UART port to use; default=’/dev/ttyUSB0’
  • uart_baudrate: The baud rate to use; default=115200
  • uart_timeout: The timeout for UART transmissions in seconds to use; default=0.1

I2C Connection

  • connection_type=i2c: Defines I2C as sensor connection type; default=’uart’
  • i2c_bus: The integer I2C bus number to use; default=0
  • i2c_address: The hexadecimal I2C address to use; default=0x28

Sensor Configuration

  • frame_id: coordinate frame id of sensor default=’bno055’
  • baudrate: baudrate of sensor default=115200
  • data_query_frequency: frequency (HZ) to read and publish data from sensor; default=100 Hz
  • calib_status_frequency: frequency (HZ) to read and publish calibration status data from sensor; default=0.1 Hz
  • placement_axis_remap: The sensor placement configuration (Axis remapping) defines the position and orientation of the sensor mount. See Bosch BNO055 datasheet section “Axis Remap” for valid positions: “P0”, “P1” (default), “P2”, “P3”, “P4”, “P5”, “P6”, “P7”.

ROS Topic Prefix

  • ros_topic_prefix: ROS topic prefix to be used. Will be prepended to the default topic names (see below). Default=”bno055/”

Calibration

The current calibration values can be requested via the calibration_request service (this puts the imu into CONFIGMODE for a short time):

ros2 service call /bno055/calibration_request example_interfaces/srv/Trigger


ROS Topics

ROS topics published by this ROS2 Node:

While bno055 is the default ROS topic prefix, it can be configured by following the directions above.


Development Workspace Setup

On a Remote Device

Setup of a ROS2 workspace & IDE for a remote device (for example Raspberry Pi):

Clone & Build

Create a ROS2 workspace on your remote device - for instance ~/ros2_ws

Make sure you sourced your ROS2 installation (underlay).

Then clone the project into your workspace’s src directory:

cd ~/ros2_ws/src
git clone https://github.com/flynneva/bno055.git

Perform a build of your workspace

cd ~/ros2_ws
colcon build

Integrate in your IDE

In order to work with the sources in your remote workspace and to integrate them in your IDE, use sshfs:

sudo apt-get install sshfs
sudo modprobe fuse

Create a IDE project directory and mount the remote ROS2 workspace:

mkdir -p ~/projects/bno055/ros2_ws
sshfs ubuntu@192.168.2.153:~/ros2_ws ~/projects/bno055/ros2_ws

Create a new project in your IDE from existing sources in ~/projects/bno055/ros2_ws. You can now manipulate the remote ROS2 workspace using your local IDE (including git operations).

Running the ROS2 node

Run the bno055 ROS2 node with default parameters:

# source your local workspace (overlay) in addition to the ROS2 sourcing (underlay):
source ~/ros2_ws/install/setup.sh
# run the node:
ros2 run bno055 bno055

Run with customized parameter file:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

Run launch file:

ros2 launch bno055 bno055.launch.py

Performing flake8 Linting

To perform code linting with flake8, just perform:

cd ~/ros2_ws/src/bno055
ament_flake8

See www.flake8rules.com for more detailed information about flake8 rules.

Note: We take advantage of flake8’s noqa mechanisim to selectively ignore some errors. Just search for # noqa: in the source code to find them.

CONTRIBUTING

Any contribution that you make to this repository will be under the 3-Clause BSD License, as dictated by that license.

Please add your name to the provided AUTHORS file after making a contribution.


Repository Summary

Checkout URI https://github.com/flynneva/bno055.git
VCS Type git
VCS Version main
Last Updated 2024-02-17
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
bno055 0.5.0

README

A BNO05 ROS2 Package

Description

A ROS2 driver for the sensor IMU Bosch BNO055.

This repo was based off of Michael Drwiega’s work on the Bosch IMU Driver for ROS 1


Wiring Guide

Selecting Connection Type

The default mode is I2C. To select UART mode connect the 3.3V pin to the PS1 pin.

CP2104 USB-to-UART Bridge

When using a CP2104 USB-to-UART Bridge:

BNO055 CP2104 Friend
Vin 5V
GND GND
SDA RXD
SCL TXD

**NOTE: on the CP2104 the pins above refer to the FTDI pins at the opposite end from the USB connector


ROS Node Parameters

To configure with your own settings please adjust the node parameter file and pass it as an argument when starting the node:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

UART Connection

  • connection_type=uart: Defines UART as sensor connection type; default=’uart’
  • uart_port: The UART port to use; default=’/dev/ttyUSB0’
  • uart_baudrate: The baud rate to use; default=115200
  • uart_timeout: The timeout for UART transmissions in seconds to use; default=0.1

I2C Connection

  • connection_type=i2c: Defines I2C as sensor connection type; default=’uart’
  • i2c_bus: The integer I2C bus number to use; default=0
  • i2c_address: The hexadecimal I2C address to use; default=0x28

Sensor Configuration

  • frame_id: coordinate frame id of sensor default=’bno055’
  • baudrate: baudrate of sensor default=115200
  • data_query_frequency: frequency (HZ) to read and publish data from sensor; default=100 Hz
  • calib_status_frequency: frequency (HZ) to read and publish calibration status data from sensor; default=0.1 Hz
  • placement_axis_remap: The sensor placement configuration (Axis remapping) defines the position and orientation of the sensor mount. See Bosch BNO055 datasheet section “Axis Remap” for valid positions: “P0”, “P1” (default), “P2”, “P3”, “P4”, “P5”, “P6”, “P7”.

ROS Topic Prefix

  • ros_topic_prefix: ROS topic prefix to be used. Will be prepended to the default topic names (see below). Default=”bno055/”

Calibration

The current calibration values can be requested via the calibration_request service (this puts the imu into CONFIGMODE for a short time):

ros2 service call /bno055/calibration_request example_interfaces/srv/Trigger


ROS Topics

ROS topics published by this ROS2 Node:

While bno055 is the default ROS topic prefix, it can be configured by following the directions above.


Development Workspace Setup

On a Remote Device

Setup of a ROS2 workspace & IDE for a remote device (for example Raspberry Pi):

Clone & Build

Create a ROS2 workspace on your remote device - for instance ~/ros2_ws

Make sure you sourced your ROS2 installation (underlay).

Then clone the project into your workspace’s src directory:

cd ~/ros2_ws/src
git clone https://github.com/flynneva/bno055.git

Perform a build of your workspace

cd ~/ros2_ws
colcon build

Integrate in your IDE

In order to work with the sources in your remote workspace and to integrate them in your IDE, use sshfs:

sudo apt-get install sshfs
sudo modprobe fuse

Create a IDE project directory and mount the remote ROS2 workspace:

mkdir -p ~/projects/bno055/ros2_ws
sshfs ubuntu@192.168.2.153:~/ros2_ws ~/projects/bno055/ros2_ws

Create a new project in your IDE from existing sources in ~/projects/bno055/ros2_ws. You can now manipulate the remote ROS2 workspace using your local IDE (including git operations).

Running the ROS2 node

Run the bno055 ROS2 node with default parameters:

# source your local workspace (overlay) in addition to the ROS2 sourcing (underlay):
source ~/ros2_ws/install/setup.sh
# run the node:
ros2 run bno055 bno055

Run with customized parameter file:

ros2 run bno055 bno055 --ros-args --params-file ./src/bno055/bno055/params/bno055_params.yaml

Run launch file:

ros2 launch bno055 bno055.launch.py

Performing flake8 Linting

To perform code linting with flake8, just perform:

cd ~/ros2_ws/src/bno055
ament_flake8

See www.flake8rules.com for more detailed information about flake8 rules.

Note: We take advantage of flake8’s noqa mechanisim to selectively ignore some errors. Just search for # noqa: in the source code to find them.

CONTRIBUTING

Any contribution that you make to this repository will be under the 3-Clause BSD License, as dictated by that license.

Please add your name to the provided AUTHORS file after making a contribution.