light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

Repository Summary

Checkout URI https://github.com/ei-nav/light-map-navigation.git
VCS Type git
VCS Version main
Last Updated 2025-02-14
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

README

OPEN: Openstreetmap-enhanced oPen-air sEmantic Navigation

Paper arXiv Project Page

OPEN is a system designed for efficient last-mile delivery using autonomous robots. It leverages OpenStreetMap (OSM) for scalable map representation, Large Language Models (LLMs) for understanding delivery instructions, and Vision-Language Models (VLMs) for localization, map updates, and house number recognition.

Installation

The current development environment is Ubuntu 22.04, ROS2 Humble, and Gazebo Classic 11.

Using Docker

This project includes a basic Dockerfile and can be used with Dev Container for simulation testing and development.

  1. Install Docker and NVIDIA Container Toolkit and configure them on the host machine:
    # Docker installation
    https://docs.docker.com/engine/install/ubuntu/
    wget http://fishros.com/install -O fishros (optional)
    
    # NVIDIA Container Toolkit installation
    https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

    # nvidia-docker installation
    sudo apt install nvidia-docker2
    
    # Configure Docker container to use GPU
    sudo nvidia-ctk runtime configure --runtime=docker
    sudo systemctl restart docker
    
  1. Download and install the image:
    # Download from Baidu Cloud
    Link: https://pan.baidu.com/s/1xSDHBTYh8PTt4HNBLy7FWA?pwd=emgo 
    Password: emgo 
    
    # Load the image
    docker load -i open.tar
    
  1. Clone the repository:
    git clone https://github.com/EI-Nav/light-map-navigation.git --depth=1
    git submodule init
    git submodule update
    
    cd src/classic_localization/FAST_LIO/
    git submodule init
    git submodule update
    
  1. Download Gazebo models and extract them to the ~/.gazebo/ directory:
    # Download from Baidu Cloud Drive (Choose one of the following):
    
    # Option 1: Complete model library (includes unused models)
    Link: https://pan.baidu.com/s/1Mkn4BHXaeWyvjxCMvw-gZQ
    Password: pp8a
    
    # Option 2: Minimal model library (recommended, contains only required models)
    Link: https://pan.baidu.com/s/1CojOxnFrJjSLM_jpmkK_KA
    Password: 49xs
    
    # After extraction, place files in
    ~/.gazebo/
    
  1. Install the ms-vscode-remote.remote-containers extension in VSCode on the host machine.

  2. Open this project in VSCode, press Ctrl+Shift+P, type and select Dev Containers: Rebuild and Reopen in Container.

  3. Install dependencies and compile:

    # Set up your proxy
    export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890
    
    # Install dependencies
    ./build_dependencies.sh
    
    # Compile
    ./build_project.sh
    

Source Installation

  1. Clone the repository:
    git clone https://github.com/EI-Nav/light-map-navigation.git --depth=1
    git submodule init
    git submodule update

    cd src/classic_localization/FAST_LIO/
    git submodule init
    git submodule update
    
  1. Install Livox SDK2:
    sudo apt install cmake
    
    git clone https://github.com/Livox-SDK/Livox-SDK2.git
    cd ./Livox-SDK2/
    mkdir build
    cd build
    cmake .. && make -j
    sudo make install
    
  1. Set up the conda environment:
    conda create --name dl_env python=3.10
    conda activate dl_env
    
    conda install -c conda-forge libstdcxx-ng
    pip install "numpy<2.0" pandas matplotlib scikit-learn jupyterlab
    pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
    pip install opencv-python pycocotools matplotlib onnxruntime
    pip install git+https://github.com/facebookresearch/sam2.git
    pip install git+https://github.com/IDEA-Research/GroundingDINO.git
    
  1. Install dependencies for ros package:
    cd light-map-navigation
    
    rosdep install -r --from-paths src --ignore-src --rosdistro $ROS_DISTRO -y
    
    pip3 install -r requirements.txt
    
  1. Install other dependencies according to the build_dependencies.sh.

  2. Compile:

    ./build.sh
    

Configuration

To use this repository, you’ll need to configure the following credentials:

VLM API

# /workspace/light-map-navigation/src/building_entrance_recognition/config/api_config.yaml
vlm_api:
  key: "your_key"
  base_url: "your_base_url"
  model_name: "your_model_name" 

LLM API

# /workspace/light-map-navigation/src/task_planning/config/api_config.yaml
llm_api:
  key: "your_key"
  base_url: "your_base_url"
  model_name: "your_model_name" 

GSAM2 Config

grounded_sam2_node:
  ros__parameters:
    gsam2:
      scale: 1.0
      do_sharpen: false
      base_path: "/workspaces/light-map-navigation/src/grounded_sam2/grounded_sam2/grounded_sam2/"
      text_prompt: "ground . car . building"
      sam2_checkpoint: "./checkpoints/sam2.1_hiera_small.pt"
      sam2_model_config: "configs/sam2.1/sam2.1_hiera_s.yaml"
      grounding_dino_config: "grounding_dino/groundingdino/config/GroundingDINO_SwinT_OGC.py"
      grounding_dino_checkpoint: "gdino_checkpoints/groundingdino_swint_ogc.pth"
      box_threshold: 0.3
      text_threshold: 0.25
      area_threshold: 80
      processing_rate: 10.0

Run

# Allow the container to access the host's X server
xhost +

Simulation Mode Example

# Run the robot's navigation system and simulation environment
ros2 launch classic_nav_bringup bringup_sim.launch.py \
world:=MEDIUM_OSM \
mode:=nav \
lio:=fastlio \
localization:=icp \
lio_rviz:=False \
nav_rviz:=True \
use_sim_time:=True

# Run delivery-related nodes
ros2 launch delivery_bringup delivery_system_sim.launch.py

# Run client to send delivery requests
ros2 run delivery_executor delivery_executor_action_client

GSAM2 Node

If you want to use Grounded-SAM-2 for open-vocabulary instance segmentation, you can run the following commands:

# Set up your proxy
export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890

# Download SAM2 checkpoints
cd src/grounded_sam2/grounded_sam2/grounded_sam2/checkpoints
bash download_ckpts.sh

# Download GroundingDINO checkpoints
cd src/grounded_sam2/grounded_sam2/grounded_sam2/gdino_checkpoints
bash download_ckpts.sh

# Run Grounded-SAM-2 server
cd /workspaces/light-map-navigation
ros2 launch grounded_sam2 gsam2_node.launch.py

Robot Model

Four-wheeled vehicle using a differential drive model.

Known Issues

  • There are coordinate system issues, with the vehicle appearing below the map.

TODO

  • Delete old delivery code, models, and tests.
  • Improve documentation.

Acknowledgments

This project builds upon and is inspired by several excellent works:

We thank all the contributors of these open-source projects for their valuable work.

Citation

If you find our work useful for your research, please consider giving this repository a star ⭐ and citing our paper as follows:

@misc{wang2025openbenchnewbenchmarkbaseline,
      title={OpenBench: A New Benchmark and Baseline for Semantic Navigation in Smart Logistics}, 
      author={Junhui Wang and Dongjie Huo and Zehui Xu and Yongliang Shi and Yimin Yan and Yuanxin Wang and Chao Gao and Yan Qiao and Guyue Zhou},
      year={2025},
      eprint={2502.09238},
      archivePrefix={arXiv},
      primaryClass={cs.RO},
      url={https://arxiv.org/abs/2502.09238}, 
}

CONTRIBUTING

No CONTRIBUTING.md found.

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository

light-map-navigation repository