![]() |
dnn_node_sample package from hobot_dnn repodnn_benchmark_example dnn_node dnn_node_example dnn_node_sample |
Package Summary
Tags | No category tags. |
Version | 2.3.2 |
License | Apache License 2.0 |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/d-robotics/hobot_dnn.git |
VCS Type | git |
VCS Version | develop |
Last Updated | 2024-12-16 |
Dev Status | UNMAINTAINED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- zhukao
Authors
English | 简体中文 |
Getting Started with DNN Node Sample
Introduction
The DNN Node sample package is an example of using the Dnn Node package. By inheriting the DnnNode virtual base class, it utilizes the YOLOv5 model and image data to perform algorithm inference on a BPU processor.
The image data comes from subscribed image data messages, supporting image data published using MIPI/USB cameras and local images. After the inference is completed, a custom algorithm output parsing method is used to parse the algorithm’s output tensor. Once parsed, the intelligent results are published, and real-time rendering effects can be viewed through a web interface.
Development Environment
- Programming Language: C/C++
- Development Platform: X3/X86
- System Version: Ubuntu 20.04/Ubuntu 22.04
- Compiler Toolchain: Linux GCC 9.3.0/Linaro GCC 11.4.0
Compilation
- X3: Supports compilation on X3 Ubuntu system and cross-compilation on PC using Docker.
- X86: Supports compilation on X86 Ubuntu system. Compilation dependencies and package functionalities can be controlled through compilation options.
X3 Ubuntu
- Confirm Compilation Environment
- X3 Ubuntu system is installed on the board.
- The current compilation terminal has set the TROS environment variable:
source /opt/tros/setup.bash
. - ROS2 software package build system ament_cmake is installed. Installation command:
apt update; apt-get install python3-catkin-pkg; pip3 install empy
. - ROS2 compile tool colcon is installed. Installation command:
pip3 install -U colcon-common-extensions
.
- Compilation
- Compilation command:
colcon build --packages-select dnn_node_sample
Docker Cross-Compilation for X3
- Confirm Compilation Environment
- Compile in Docker environment, and TROS is already compiled in Docker. For detailed instructions on Docker installation, cross-compilation, TROS compilation, and deployment, please refer to the D-Robotics RDK User Manual.
- Compilation
- Compilation command:
export TARGET_ARCH=aarch64
export TARGET_TRIPLE=aarch64-linux-gnu
export CROSS_COMPILE=/usr/bin/$TARGET_TRIPLE-
colcon build --packages-select dnn_node_sample \
--merge-install \
--cmake-force-configure \
--cmake-args \
--no-warn-unused-cli \
-DCMAKE_TOOLCHAIN_FILE=`pwd`/robot_dev_config/aarch64_toolchainfile.cmake
Usage Guide
Execution
X3 Ubuntu
Including image message publishing and web display.
Publish Images by F37 MIPI Camera
# Set up the TogetherROS environment
source /opt/tros/setup.bash
# Copy models and sample images to the working directory
cp -r /opt/tros/${TROS_DISTRO}/lib/dnn_node_sample/config/ .
# Configure the MIPI camera
export CAM_TYPE=mipi
ros2 launch dnn_node_sample dnn_node_sample.launch.py
Publish Images by USB Camera
# Set up the TogetherROS environment
source /opt/tros/setup.bash
# Copy models and sample images to the working directory
cp -r /opt/tros/${TROS_DISTRO}/lib/dnn_node_sample/config/ .
# Configure the USB camera
export CAM_TYPE=usb
ros2 launch dnn_node_sample dnn_node_sample.launch.py
Use Local Images
# Setup TogetherROS environment
source /opt/tros/setup.bash
# Copy models and feedback images to the running directory
cp -r /opt/tros/${TROS_DISTRO}/lib/dnn_node_sample/config/ .
# Configure local image feedback
export CAM_TYPE=fb
# The local image used is /opt/tros/${TROS_DISTRO}/lib/dnn_node_sample/config/target.jpg
ros2 launch dnn_node_sample dnn_node_sample.launch.py
Notes
- Switching MIPI camera type
The default MIPI camera type is F37
, you can modify the video_device
configuration in the mipi_node
section of the launch script to change the camera type. The supported configurations are F37
and GC4663
.
- Modifying the feedback image
The default feedback image is /opt/tros/${TROS_DISTRO}/lib/dnn_node_sample/config/target.jpg
, you can modify the image_source
configuration in the fb_node
section of the launch script to change the feedback image.
Results Analysis
Illustration using local image feedback.
X3
Execute the following command:
root@ubuntu:~# source /opt/tros/setup.bash
root@ubuntu:~# export CAM_TYPE=fb
root@ubuntu:~# ros2 launch dnn_node_sample dnn_node_sample.launch.py
Log Output:
[INFO] [launch]: All log files can be found below /root/.ros/log/2022-09-20-12-47-57-043477-ubuntu-4390
[INFO] [launch]: Default logging verbosity is set to INFO
camera_type is fb
using feedback
webserver has launch
[INFO] [hobot_image_pub-1]: process started with pid [4396]
[INFO] [hobot_codec_republish-2]: process started with pid [4398]
[INFO] [dnn_node_sample-3]: process started with pid [4400]
[INFO] [websocket-4]: process started with pid [4402]
```[dnn_node_sample-3] [C][4400][09-20][12:47:58:604][configuration.cpp:49][EasyDNN]EasyDNN version: 0.4.11
[dnn_node_sample-3] [BPU_PLAT]BPU Platform Version(1.3.1)!
[dnn_node_sample-3] [HBRT] set log level as 0. version = 3.14.5
[dnn_node_sample-3] [DNN] Runtime version = 1.9.7_(3.14.5 HBRT)
[dnn_node_sample-3] [WARN] [1663649278.801689569] [dnn]: Run default SetOutputParser.
[dnn_node_sample-3] [WARN] [1663649278.802293300] [dnn]: Set output parser with default dnn node parser, you will get all output tensors and should parse output_tensors in PostProcess.
[dnn_node_sample-3] [WARN] [1663649280.115318280] [dnn_node_sample]: input fps: 11.49, out fps: 11.64, infer time ms: 65, post process time ms: 78
[dnn_node_sample-3] [WARN] [1663649281.120420769] [dnn_node_sample]: input fps: 11.49, out fps: 9.98, infer time ms: 67, post process time ms: 81
[dnn_node_sample-3] [WARN] [1663649282.217524812] [dnn_node_sample]: input fps: 10.00, out fps: 9.97, infer time ms: 71, post process time ms: 74
[dnn_node_sample-3] [WARN] [1663649283.318315410] [dnn_node_sample]: input fps: 10.00, out fps: 10.00, infer time ms: 71, post process time ms: 74
[dnn_node_sample-3] [WARN] [1663649284.320494664] [dnn_node_sample]: input fps: 10.00, out fps: 9.99, infer time ms: 72, post process time ms: 76
The log shows that both the frame rates of subscribing image messages and publishing AI messages are around 10fps, with the algorithm taking about 70 milliseconds for single-frame inference and about 78 milliseconds for output parsing.
Web Display
Web effect screenshot:
Detected target bounding boxes and categories are rendered.
Changelog for package dnn_benchmark_example
tros_2.3.0 (2024-03-27)
- 新增适配ros2 humble零拷贝。
- 新增中英双语Readme。
- 适配重构dnn_node。
- 零拷贝通信使用的qos的Reliability由RMW_QOS_POLICY_RELIABILITY_RELIABLE(rclcpp::QoS())变更为RMW_QOS_POLICY_RELIABILITY_BEST_EFFORT(rclcpp::SensorDataQoS())。
tros_2.2.2 (2023-12-22)
tros_2.0.1 (2023-07-14)
- 规范Rdkultra产品名。
tros_2.0.0rc1 (2023-05-23)
- 修复图片回灌出错问题
tros_2.0.0 (2023-05-11)
- 更新package.xml,支持应用独立打包
- 更新应用启动launch脚本
tros_1.1.6b (2023-3-03)
- 修复readme文档错误导致使用错误问题。
tros_1.1.6a (2023-2-16)
- 支持x86版本部署,适配x86版本的dnn node,新增x86版本编译选项。
tros_1.1.2 (2022-9-28)
- 新增dnn_node_sample package,为dnn_node的使用示例,用户可以参考部署自己的算法模型。
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
ament_cmake | |
mipi_cam | |
hobot_usb_cam | |
hobot_image_publisher | |
hobot_codec | |
websocket | |
ament_lint_auto | |
ament_lint_common | |
rclcpp | |
sensor_msgs | |
hbm_img_msgs | |
ai_msgs | |
dnn_node | |
hobot_cv |