Package Summary
Tags | No category tags. |
Version | 0.1.3 |
License | MIT |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://gitlab.com/Juulbl/ros2-pid |
VCS Type | git |
VCS Version | galactic |
Last Updated | 2022-01-19 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Juul Bloemers
- Lars Bloemers
Authors
ROS 2 PID
PID controller for ROS2
Installation
This library can be used in two ways, as a library and as a node. See the documentation section. Using the library as a PID library should not require extra steps. If you want to use the pre-built PID nodes, you will need to do the following:
mkdir -p ~/jlb_pid_ws/src
cd ~/jlb_pid_ws
wget https://gitlab.com/Juulbl/ros2-pid/-/raw/ros2/jlb_pid.repos
vcs import src < jlb_pid.repos
colcon build --symlink-install
# Add them to your shell profile (`~/.bashrc`, `~/.zshrc`, etc.):
echo 'source ~/jlb_pid_ws/install/setup.sh' >> ~/.bashrc
Adding to a project
Once this is set up, we will need to setup the dependencies of the package.
package.xml
:
<!-- As a generic dependency -->
<depend>jlb_pid</depend>
<!-- Or, as a build dependency (when using the library) -->
<build_depend>jlb_pid</build_depend>
<!-- Or, as an exec dependency (when using the topic interface)-->
<exec_depend>jlb_pid</exec_depend>
CMakeLists.txt
:
find_package(jlb_pid REQUIRED)
# Add the following if you want to use the library
ament_target_dependencies(<PACKAGE_NAME>
jlb_pid
)
Documentation
This section will go over the interaction with the PID node.
Library
This section will go over the documentation when using the library.
Below you will find an example of how to use the library, the example does not work properly but should give you an idea of how to use it.
#include <jlb_pid/controller.hpp>
// Create a controller with a PID and config.
// We will be the default controller, see `Controller::Controller`.
jlb_pid::Controller controller;
// Change the setpoint
controller.set_setpoint(100);
// Create a state mock object
double state = 0;
// Create a loop to update the `plant_state` and log the control effort.
// Since we cannot actually measure the `plant_state`, we will use the return value of our
// control effort to do this
while(true){
controller.set_plant_state(state);
controller.update();
state = controller.get_control_effort();
std::cout << "State:" << state << std::endl;
}
// If the above-mentioned functions need to be executed in the same order within the same scope
// An overload of `Controller::update` can be used to simplify the process.
while(true){
state = controller.update(state);
std::cout << "State:" << state << std::endl;
}
In the example it is assumed all functions are executed within the same scope.
For a more ROS related implementation,
see the ControllerNode object.
This is source code for the pre-delivered controller_node
and should give you an idea of how to use a PID controller inside a ROS node.
Node
This section will go over the documentation when using the controller_node
.
Topics
Name | Type | Description |
---|---|---|
state | std_msgs/Float64 |
input data used for the PID system, e.g. current angle |
setpoint | std_msgs/Float64 |
the setpoint of the PID system, e.g. target angle |
enable | std_msgs/Bool |
if true, updates the PID system. If false, disables the PID system |
control_effort | std_msgs/Float64 |
the control effort, or output of the PID system |
Parameters
Required
Name | Type | Description |
---|---|---|
kp | double |
Proportional gain, default = 1.0
|
ki | double |
Integral gain, default = 0.0
|
kd | double |
Derivative gain, default = 0.0
|
Note:
kp
,ki
andkd
must all be either positive or negative (a mixture of signs results in an error)
Optional
Name | Type | Description |
---|---|---|
plant_topic | string |
allows the user to configure an alternative topic name for the plant, default = state
|
setpoint_topic | string |
allows the user to configure an alternative topic name for the setpoint, default = setpoint
|
enable_topic | string |
allows the user to configure an alternative topic name to turn the system on and of, default = enable
|
controller_topic | string |
allows the user to configure an alternative topic name for the control effort, default = control_effort
|
update_rate | double |
update rate of the node expressed in Hz, default = 1000
|
upper_limit | double |
maximum control effort value, default = double_max
|
lower_limit | double |
minimum control effort value, default = double_lowest
|
windup_limit | double |
limits the error increase or decrease for the integrator (mainly used for hardware restrictions), default = double_max
|
Usage
To setup this PID control library, add a new node to the launch file.
The following snippet is an example of a node.
In this example we specify that we want to use the pid
package.
We will add the node to the namespace example/distance_controller
,
such that every topic will be append after it.
We want to use the executable of the control node, using controller_node
.
Finally, we will specify all launch parameters.
Node(
package='jlb_pid',
namespace='example/distance_controller',
executable='controller_node',
name='distance_controller',
parameters=[
# Required
{'kp': 2.0},
{'ki': 0.01},
{'kd': 0.02},
# Optional
{'upper_limit': 0.6},
{'lower_limit': -0.6},
{'windup_limit': 0.001}
]
)
Examples
A set of example projects have been created and can be found [here][example_repo].
[example_repo]: https://gitlab.com/Larsbl00/ros2-pid-examples “ROS 2 PID | Examples” |
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
rosidl_default_generators | |
ament_cmake | |
rosidl_default_runtime | |
ament_lint_auto | |
ament_lint_common | |
builtin_interfaces | |
rclcpp | |
std_msgs |