![]() |
lidar_cnn_seg_detect package from dwd_sensor_fusion reporockauto_build_flags amathutils_lib state_machine_lib detected_objects_visualizer lidar_cnn_seg_detect rockauto_msgs darknet_ros darknet_ros_msgs kitti_player depthGet opencv_deal pcl_deal |
Package Summary
Tags | No category tags. |
Version | 1.8.0 |
License | BSD |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/vannizhou/dwd_sensor_fusion.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2022-04-08 |
Dev Status | UNMAINTAINED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Kosuke Murakami
Authors
- Kosuke Murakami
CNN LiDAR Baidu Object Segmenter
rockauto package based on Baidu’s object segmenter.
The Pretrained model
Use this link to download the pretrained model from Baidu:
https://github.com/ApolloAuto/apollo/tree/master/modules/perception/production/data/perception/lidar/models/cnnseg
These two files are needed:
- deploy.prototxt
- deploy.caffemodel
How to launch
- From a sourced terminal:
rosrun lidar_cnn_seg_detect lidar_cnn_seg_detect _network_definition_file:=/PATH/TO/FILE.prototxt _pretrained_model_file:=/PATH/TO/WEIGHTS.caffemodel _points_src:=/points_raw
roslaunch lidar_cnn_seg_detect lidar_cnn_seg_detect.launch network_definition_file:=/PATH/TO/FILE.prototxt pretrained_model_file:=/PATH/TO/WEIGHTS.caffemodel points_src:=/points_raw
- From Runtime Manager:
Computing Tab -> Detection/ lidar_detector -> cnn_segmenter_baidu
Parameters
Parameter | Type | Description | Default |
---|---|---|---|
network_definition_file |
String | Path to the network definition file (prototxt) | |
pretrained_model_file |
String | Path to the Pretrained model (weights) | |
points_src |
String | Input topic Pointcloud. Default. | /points_raw |
score_threshold |
Double | Minimum score required as given by the network to include the result (0.-1.) | 0.6 |
use_gpu |
Bool | Whether ot not to use a GPU device | true |
gpu_device_id |
Int | GPU ID | 0 |
Outputs
Topic | Type | Description |
---|---|---|
/detection/lidar_detector/points_cluster |
sensor_msgs/PointCloud2 |
Colored PointCloud of the resulting detected objects |
/detection/lidar_detector/objects |
rockauto_msgs/DetectedObjetArray |
Array of Detected Objects in rockauto format |
Notes
To display the results in Rviz objects_visualizer
is required.
(Launch file launches automatically this node).
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
roscpp | |
tf | |
tf_conversions | |
pcl_ros | |
sensor_msgs | |
geometry_msgs | |
rockauto_msgs | |
catkin | |
rockauto_build_flags |
System Dependencies
Dependant Packages
Launch files
- launch/lidar_cnn_seg_detect.launch
-
- network_definition_file [default: $(find lidar_cnn_seg_detect)/models/velodyne64/deploy.prototxt]
- pretrained_model_file [default: $(find lidar_cnn_seg_detect)/models/velodyne64/deploy.caffemodel]
- points_src [default: /kitti_player/hdl64e]
- score_threshold [default: 0.4]
- use_gpu [default: true]
- gpu_device_id [default: 0]
- width [default: 672]
- height [default: 672]
- range [default: 70]
- use_constant_feature [default: false]
- min_distance [default: 3.0]
- max_distance [default: 70.0]
- clip_height [default: 5.0]
- rviz_config [default: $(find lidar_cnn_seg_detect)/rviz_config/lidar_detect.rviz]