crlfnet repository

crlfnet repository

crlfnet repository

Repository Summary

Checkout URI https://github.com/orangesodahub/crlfnet.git
VCS Type git
VCS Version master
Last Updated 2023-03-25
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
radar_plugin 1.0.0
msgs 0.0.0
per_msgs 0.0.0
pkg 0.0.0
point_cloud 0.0.0
site_model 1.0.0
velodyne_description 1.0.9
velodyne_gazebo_plugins 1.0.9
velodyne_simulator 1.0.9

README

CRLFnet

experimental GitHub GitHub top language GitHub last commit DOI

The source code of the CRLFnet.

INSTALL & BUILD

Env: Ubuntu20.04 + ROS(Noetic) + Python3.x

  • If using Google-colab, there is a recommanded environment: CUDA10.2+PyTorch1.6.
  • Refer to INSTALL.md for the installation of OpenPCDet.
  • Install ros_numpy package mannually: [Source code][Install]

Absolute paths may need your mind: | file path | Line(s) | |———————————-|—————————————| | src/camera_info/get_cam_info.cpp | 26,64,102,140,178,216,254,292,330,368,| | src/LidCamFusion/OpenPCDet/tools/cfgs/custom_models/pointrcnn.yaml|4,5 | | src/LidCamFusion/OpenPCDet/tools/cfgs/custom_models/pv_rcnn.yaml|5,6 |

Docker

Build project from Dockerfile:

docker build -t [name]:tag /docker/

or pull image directly:

docker pull gzzyyxy/crlfnet:yxy

Launch the Site

This needs ROS to be installed.

    cd /ROOT
    
    # launch the site
    roslaunch site_model spwan.launch
    
    # launch the vehicles (optional)
    woslaunch pkg racecar.launch


Rad-Cam Fusion

This part integrates the Kalman-Filter to real-time radar data.

Necessary Configurations on GPU and model data

  • Set use_cuda to True in src/site_model/config/config.yaml to use GPU.

  • Download yolo_weights.pth from jbox, and move to src/site_model/src/utils/yolo/model_data.

Run The Rad-Cam Fusion Model

The steps to run the radar-camera fusion is listed as follows.

For the last command, an optional parameter --save or -s is available if you need to save the track of vehicles as images. The --mode or -m parameter has three options, which are normal, off-yolo and from-save. The off-yolo and from-save modes enable the user to run YOLO seprately to simulate a higher FPS.

    #--- AFTER THE SITE LAUNCHED ---#
    # run the radar message filter
    rosrun site_model radar_listener.py
    
    # run the rad-cam fusion program
    cd src/site_model
    python -m src.RadCamFusion.fusion [-m MODE] [-s]

Camera Calibration

The calibration parameters are needed in related camera-data transformation. Once the physical models are modified, update the camera calibration parameters:

    #--- AFTER THE SITE LAUNCHED ---#
    # get physical parameters of cameras
    rosrun site_model get_cam_info

    # generate calibration formula according to parameters of cameras
    python src/site_model/src/utils/generate_calib.py

Lid-Cam Fusion

This part integrates OpenPCDet to real-time lidar object detection, refer to CustomDataset.md to find how to proceed with self-product dataset using only raw lidar data.

Config Files

Configurations for model and dataset need to be specified:

  • Model Configs tools/cfgs/custom_models/XXX.yaml
  • Dataset Configs tools/cfgs/dataset_configs/custom_dataset.yaml

Now pointrcnn.yaml and pv_rcnn.yaml are supported.

Datasets

Create dataset infos before training:

    cd OpenPCDet/
    python -m pcdet.datasets.custom.custom_dataset create_custom_infos tools/cfgs/dataset_configs/custom_dataset.yaml

File custom_infos_train.pkl, custom_dbinfos_train.pkl and custom_infos_test.pkl will be saved to data/custom.

Train

Specify the model using YAML files defined above.

    cd tools/
    python train.py --cfg_file path/to/config/file/

For example, if using PV_RCNN for training:

    cd tools/
    python train.py --cfg_file cfgs/custom_models/pv_rcnn.yaml --batch_size 2 --workers 4 --epochs 80

Pretrained Model

Download pretrained model through these links: |model |time cost |URL | |————–|—————-|———————————————————————————-| |PointRCNN |~3h |Google drive / Jbox| |PV_RCNN |~6h |Google drive / Jbox|

Predict (Local)

Prediction on local dataset help to check the result of trainin. Prepare the input properly.

python pred.py --cfg_file path/to/config/file/ --ckpt path/to/checkpoint/ --data_path path/to/dataset/

For example:

python pred.py --cfg_file cfgs/custom_models/pv_rcnn.yaml --ckpt ../output/custom_models/pv_rcnn/default/ckpt/checkpoint_epoch_80.pth --data_path ../data/custom/testing/velodyne/

Visualize the results in rviz, white boxes represents the vehicles.

<img src=./src/site_model/docs/rviz2.png width=80%>

Lid-Cam Fusion

Follow these steps for only lidar-camera fusion. Some of them need different bash terminals. For the last command, additional parameter --save_result is required if need to save the results of fusion in the form of image.

    #--- AFTER THE SITE LAUNCHED --#
    # cameras around lidars start working
    python src/site_model/src/LidCamFusion/camera_listener.py 

    # lidars start working
    python src/site_model/src/LidCamFusion/pointcloud_listener.py

    # combine all the point clouds and fix their coords
    rosrun site_model pointcloud_combiner

    # start camera-lidar fusion
    cd src/site_model/
    python -m src.LidCamFusion.fusion [--config] [--eval] [--re] [--disp] [--printl] [--printm]

TODO…

Issues

Some problems may occurred during debugging.

  • Confused: set the batch_size=1 and still out of memory: https://github.com/open-mmlab/OpenPCDet/issues/140
  • 段错误(核心已转储) when run dem.py: https://github.com/open-mmlab/OpenPCDet/issues/846
  • N > 0 assert faild. CUDA kernel launch blocks must be positive, but got N= 0 when training: https://github.com/open-mmlab/OpenPCDet/issues/945
  • raise NotImplementedError, NaN or Inf found in input tensor when training: https://github.com/open-mmlab/OpenPCDet/issues/280
  • fix recall calculation bug for empty scene: https://github.com/open-mmlab/OpenPCDet/pull/908
  • installation Error “ fatal error: THC/THC.h: No such file or directory #include <THC/THC.h> “: https://github.com/open-mmlab/OpenPCDet/issues/1014
  • Welcome to report more issues!
Star History ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=OrangeSodahub/CRLFnet&type=Date)](https://star-history.com/#OrangeSodahub/CRLFnet&Date)

CONTRIBUTING

No CONTRIBUTING.md found.

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository

crlfnet repository