No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

lidar_point_pillars package from autoware_learn repo

amathutils_lib autoware_build_flags autoware_health_checker emergency_handler gnss lanelet2_extension libvectormap libwaypoint_follower map_file object_map op_planner op_ros_helpers op_simu op_utility ros_observer tvm_utility vector_map vector_map_server vehicle_sim_model autoware_connector ekf_localizer gnss_localizer image_processor imm_ukf_pda_track lidar_apollo_cnn_seg_detect lidar_euclidean_cluster_detect lidar_fake_perception lidar_kf_contour_track lidar_localizer lidar_naive_l_shape_detect lidar_point_pillars lidar_shape_estimation naive_motion_predict ndt_cpu ndt_gpu ndt_tku obj_db pcl_omp_registration pixel_cloud_fusion points_downsampler points_preprocessor pos_db range_vision_fusion road_occupancy_processor roi_object_filter trafficlight_recognizer twist_generator vel_pose_diff_checker vision_beyond_track vision_darknet_detect vision_lane_detect vision_segment_enet_detect vision_ssd_detect astar_search costmap_generator decision_maker dp_planner ff_waypoint_follower freespace_planner lane_planner lattice_planner ll2_global_planner mpc_follower op_global_planner op_local_planner op_simulation_package op_utilities pure_pursuit state_machine_lib twist_filter twist_gate way_planner waypoint_maker waypoint_planner autoware_quickstart_examples autoware_can_msgs autoware_config_msgs autoware_external_msgs autoware_lanelet2_msgs autoware_map_msgs autoware_msgs autoware_system_msgs tablet_socket_msgs vector_map_msgs carla_autoware_bridge gazebo_camera_description gazebo_imu_description lgsvl_simulator_bridge vehicle_gazebo_simulation_interface vehicle_gazebo_simulation_launcher wf_simulator autoware_bag_tools autoware_camera_lidar_calibrator autoware_launcher autoware_launcher_rviz calibration_publisher data_preprocessor graph_tools kitti_box_publisher kitti_launch kitti_player lanelet_aisan_converter log_tools map_tf_generator map_tools marker_downsampler mqtt_socket multi_lidar_calibrator oculus_socket pc2_downsampler rosbag_controller runtime_manager sound_player system_monitor tablet_socket twist2odom udon_socket vehicle_engage_panel vehicle_socket decision_maker_panel detected_objects_visualizer fastvirtualscan gazebo_world_description glviewer integrated_viewer points2image rosinterface autoware_rviz_plugins vehicle_description vehicle_model adi_driver as autoware_driveworks_gmsl_interface autoware_driveworks_interface vlg22c_cam custom_msgs garmin hokuyo javad_navsat_driver kvaser sick_lms5xx memsic_imu microstrain_driver nmea_navsat autoware_pointgrey_drivers sick_ldmrs_description sick_ldmrs_driver sick_ldmrs_laser sick_ldmrs_msgs sick_ldmrs_tools vectacam xsens_driver ymc ds4 ds4_driver ds4_msgs lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation mrt_cmake_modules

Package Summary

Tags No category tags.
Version 1.12.0
License Apache 2.0
Build type CATKIN
Use RECOMMENDED

Repository Summary

Description autoware src learn and recode.
Checkout URI https://github.com/is-whale/autoware_learn.git
VCS Type git
VCS Version 1.14
Last Updated 2025-03-14
Dev Status UNKNOWN
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

lidar_point_pillars

Additional Links

No additional links.

Maintainers

  • Kosuke Murakami

Authors

No additional authors.

Point Pillars for 3D Object Detection: ver. 1.0

Autoware package for Point Pillars. Referenced paper.

This node can be compiled either using cuDNN and TensorRT or by using TVM, the default are cuDNN and TensorRT.

Requirements

  • CUDA Toolkit v9.0 or v10.0

To compile the node using the cuDNN and TensorRT support the requirements are:

  • cuDNN: Tested with v7.3.1

  • TensorRT: Tested with 5.0.2 -> How to install

To compile the node using TVM support the requirements are:

  • TVM runtime, TVM Python bindings and dlpack headers

  • tvm_utility package

How to setup

Setup the node using cuDNN and TensorRT support:

  1. Download the pretrained file from here.
$ git clone https://github.com/k0suke-murakami/kitti_pretrained_point_pillars.git

Setup the node using TVM support:

  1. Clone the modelzoo repository for Autoware here.

  2. Use the TVM-CLI to export point pillars models to TVM (Instruction on how to do it are present in the repository
    ```), models are 
    ```perception/lidar_obstacle_detection/point_pillars_pfe/onnx_fp32_kitti
    ``` and 
    ```perception/lidar_obstacle_detection/point_pillars_rpn/onnx_fp32_kitti
    
  3. Copy the generated files into the tvm_models/tvm_point_pillars_pfe and tvm_models/tvm_point_pillars_rpn folders respectively for each model. With these files in place, the package will be built using TVM.

  4. Compile the node.

How to launch

  • Launch file (cuDNN and TensorRT support): roslaunch lidar_point_pillars lidar_point_pillars.launch pfe_onnx_file:=/PATH/TO/FILE.onnx rpn_onnx_file:=/PATH/TO/FILE.onnx input_topic:=/points_raw

  • Launch file (TVM support): roslaunch lidar_point_pillars lidar_point_pillars.launch

  • You can launch it through the runtime manager in Computing tab, as well.

API

/**
* @brief Call PointPillars for the inference.
* @param[in] in_points_array pointcloud array
* @param[in] in_num_points Number of points
* @param[out] out_detections Output bounding box from the network
* @details This is an interface for the algorithm.
*/
void doInference(float* in_points_array, int in_num_points, std::vector<float> out_detections);

Parameters

Parameter Type Description Default
input_topic String Input topic Pointcloud. /points_raw
baselink_support Bool Whether to use baselink to adjust parameters. True
reproduce_result_mode Bool Whether to enable reproducible result mode at the cost of the runtime. False
score_threshold Float Minimum score required to include the result [0,1] 0.5
nms_overlap_threshold Float Minimum IOU required to have when applying NMS [0,1] 0.5
pfe_onnx_file String Path to the PFE onnx file, unused if TVM build is chosen  
rpn_onnx_file String Path to the RPN onnx file, unused if TVM build is chosen  

Outputs

Topic Type Description
/detection/lidar_detector/objects autoware_msgs/DetectedObjetArray Array of Detected Objects in Autoware format

Notes

  • To display the results in Rviz objects_visualizer is required. (Launch file launches automatically this node).

  • Pretrained models are available here, trained with the help of the KITTI dataset. For this reason, these are not suitable for commercial purposes. Derivative works are bound to the BY-NC-SA 3.0 License. (https://creativecommons.org/licenses/by-nc-sa/3.0/)

CHANGELOG

Changelog for package lidar_point_pillars

1.11.0 (2019-03-21)

  • [Feature]PointPillars (#2029)
  • Contributors: Kosuke Murakami

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Package Dependencies

System Dependencies

No direct system dependencies.

Dependant Packages

No known dependants.

Launch files

  • launch/lidar_point_pillars.launch
      • input_topic [default: /points_raw]
      • baselink_support [default: true]
      • reproduce_result_mode [default: true]
      • score_threshold [default: 0.5]
      • nms_overlap_threshold [default: 0.5]
      • pfe_onnx_file
      • rpn_onnx_file

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged lidar_point_pillars at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.