No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

mpc_lateral_controller package from autodrrt repo

autonomous_emergency_braking control_performance_analysis control_validator external_cmd_selector joy_controller lane_departure_checker mpc_lateral_controller obstacle_collision_checker operation_mode_transition_manager pid_longitudinal_controller predicted_path_checker pure_pursuit shift_decider trajectory_follower_base trajectory_follower_node vehicle_cmd_gate diagnostic_converter kinematic_evaluator localization_evaluator planning_evaluator ekf_localizer geo_pose_projector gyro_odometer ar_tag_based_localizer landmark_manager localization_error_monitor localization_util ndt_scan_matcher pose2twist pose_initializer pose_instability_detector stop_filter tree_structured_parzen_estimator twist2accel yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer map_height_fitter map_loader map_projection_loader map_tf_generator lanelet2_map_preprocessor ros2_bevdet ros2_bevformer bevfusion bytetrack cluster_merger compare_map_segmentation crosswalk_traffic_light_estimator detected_object_feature_remover detected_object_validation detection_by_tracker elevation_map_loader euclidean_cluster front_vehicle_velocity_estimator ground_segmentation heatmap_visualizer image_projection_based_fusion lidar_apollo_instance_segmentation lidar_apollo_segmentation_tvm lidar_apollo_segmentation_tvm_nodes lidar_centerpoint lidar_centerpoint_tvm map_based_prediction multi_object_tracker object_merger object_range_splitter object_velocity_splitter occupancy_grid_map_outlier_filter probabilistic_occupancy_grid_map radar_crossing_objects_noise_filter radar_fusion_to_detected_object radar_object_clustering radar_object_tracker radar_tracks_msgs_converter shape_estimation simple_object_merger tensorrt_classifier tensorrt_yolo tensorrt_yolox tracking_object_merger traffic_light_arbiter traffic_light_classifier traffic_light_fine_detector traffic_light_map_based_detector traffic_light_multi_camera_fusion traffic_light_occlusion_predictor traffic_light_ssd_fine_detector traffic_light_visualization behavior_path_avoidance_by_lane_change_module behavior_path_avoidance_module behavior_path_external_request_lane_change_module behavior_path_goal_planner_module behavior_path_lane_change_module behavior_path_planner behavior_path_planner_common behavior_path_side_shift_module behavior_path_start_planner_module behavior_velocity_blind_spot_module behavior_velocity_crosswalk_module behavior_velocity_detection_area_module behavior_velocity_intersection_module behavior_velocity_no_drivable_lane_module behavior_velocity_no_stopping_area_module behavior_velocity_occlusion_spot_module behavior_velocity_out_of_lane_module behavior_velocity_planner behavior_velocity_planner_common behavior_velocity_run_out_module behavior_velocity_speed_bump_module behavior_velocity_stop_line_module behavior_velocity_template_module behavior_velocity_traffic_light_module behavior_velocity_virtual_traffic_light_module behavior_velocity_walkway_module costmap_generator external_velocity_limit_selector freespace_planner freespace_planning_algorithms mission_planner motion_velocity_smoother objects_of_interest_marker_interface obstacle_avoidance_planner obstacle_cruise_planner obstacle_stop_planner obstacle_velocity_limiter path_smoother planning_debug_tools planning_test_utils planning_topic_converter planning_validator route_handler rtc_interface rtc_replayer bezier_sampler frenet_planner path_sampler sampler_common scenario_selector static_centerline_optimizer surround_obstacle_checker gnss_poser image_diagnostics image_transport_decompressor imu_corrector livox_tag_filter pointcloud_preprocessor radar_scan_to_pointcloud2 radar_static_pointcloud_filter radar_threshold_filter radar_tracks_noise_filter tier4_pcl_extensions vehicle_velocity_converter autoware_auto_msgs_adapter bluetooth_monitor component_state_monitor default_ad_api ad_api_adaptors ad_api_visualizers automatic_pose_initializer diagnostic_graph_aggregator dummy_diag_publisher dummy_infrastructure duplicated_node_checker emergency_handler mrm_comfortable_stop_operator mrm_emergency_stop_operator system_error_monitor system_monitor topic_state_monitor velodyne_monitor accel_brake_map_calibrator external_cmd_converter raw_vehicle_cmd_converter steer_offset_estimator vehicle_info_util launch launch_ros autoware_ad_api_specs autoware_adapi_v1_msgs autoware_adapi_version_msgs autoware_auto_common autoware_auto_geometry autoware_auto_control_msgs autoware_auto_geometry_msgs autoware_auto_mapping_msgs autoware_auto_msgs autoware_auto_perception_msgs autoware_auto_planning_msgs autoware_auto_system_msgs autoware_auto_vehicle_msgs autoware_auto_perception_rviz_plugin autoware_auto_tf2 autoware_cmake autoware_lint_common autoware_utils lanelet2_extension autoware_common_msgs autoware_control_msgs autoware_localization_msgs autoware_map_msgs autoware_perception_msgs autoware_planning_msgs autoware_sensing_msgs autoware_system_msgs autoware_vehicle_msgs autoware_point_types autoware_testing bag_time_manager_rviz_plugin component_interface_specs component_interface_tools component_interface_utils cuda_utils fake_test_node geography_utils global_parameter_loader glog_component goal_distance_calculator grid_map_utils interpolation kalman_filter motion_utils object_recognition_utils osqp_interface path_distance_calculator perception_utils polar_grid qp_interface rtc_manager_rviz_plugin signal_processing tensorrt_common tier4_adapi_rviz_plugin tier4_api_utils tier4_automatic_goal_rviz_plugin tier4_autoware_utils tier4_calibration_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_rviz_plugin tier4_datetime_rviz_plugin tier4_debug_rviz_plugin tier4_debug_tools tier4_localization_rviz_plugin tier4_perception_rviz_plugin tier4_planning_rviz_plugin tier4_screen_capture_rviz_plugin tier4_simulated_clock_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_target_object_type_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin time_utils simulator_compatibility_test traffic_light_recognition_marker_publisher traffic_light_utils tvm_utility dma_customer_msg dma_transfer eagleye_coordinate eagleye_navigation eagleye_msgs eagleye_rt eagleye_can_velocity_converter eagleye_fix2kml eagleye_geo_pose_converter eagleye_geo_pose_fusion eagleye_gnss_converter eagleye_tf llh_converter morai_msgs mussp ndt_omp orocos_kdl python_orocos_kdl pointcloud_to_laserscan rtklib_bridge rtklib_msgs autoware_external_api_msgs autoware_iv_external_api_adaptor autoware_iv_internal_api_adaptor awapi_awiv_adapter tier4_api_msgs tier4_auto_msgs_converter tier4_control_msgs tier4_debug_msgs tier4_external_api_msgs tier4_hmi_msgs tier4_localization_msgs tier4_map_msgs tier4_perception_msgs tier4_planning_msgs tier4_rtc_msgs tier4_simulation_msgs tier4_system_msgs tier4_v2x_msgs tier4_vehicle_msgs io_opt tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch fastrtps cyclonedds lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation sophus angles behaviortree_cpp_v3 bond bond_core bondcpp bondpy smclib test_bond cudnn_cmake_module diagnostic_aggregator diagnostic_common_diagnostics diagnostic_updater diagnostics self_test filters geodesy geographic_info geographic_msgs grid_map grid_map_cmake_helpers grid_map_core grid_map_costmap_2d grid_map_cv grid_map_demos grid_map_filters grid_map_loader grid_map_msgs grid_map_octomap grid_map_pcl grid_map_ros grid_map_rviz_plugin grid_map_sdf grid_map_visualization mrt_cmake_modules nav2_amcl nav2_behavior_tree nav2_behaviors nav2_bringup nav2_bt_navigator nav2_collision_monitor nav2_common nav2_controller nav2_core nav2_costmap_2d costmap_queue dwb_core dwb_critics dwb_msgs dwb_plugins nav2_dwb_controller nav_2d_msgs nav_2d_utils nav2_lifecycle_manager nav2_map_server nav2_msgs nav2_navfn_planner nav2_planner nav2_regulated_pure_pursuit_controller nav2_rotation_shim_controller nav2_rviz_plugins nav2_simple_commander nav2_smac_planner nav2_smoother nav2_system_tests nav2_theta_star_planner nav2_util nav2_velocity_smoother nav2_voxel_grid nav2_waypoint_follower navigation2 dynamic_edt_3d octomap octovis octomap_msgs osqp_vendor pacmod3_msgs pcl_msgs pcl_conversions pcl_ros perception_pcl point_cloud_msg_wrapper radar_msgs can_msgs rqt_tf_tree tensorrt_cmake_module topic_tools topic_tools_interfaces tvm_vendor cv_bridge image_geometry opencv_tests vision_opencv xacro rviz2 rviz_assimp_vendor rviz_common rviz_default_plugins rviz_ogre_vendor rviz_rendering rviz_rendering_tests rviz_visual_testing_framework dummy_perception_publisher fault_injection simple_planning_simulator classformsg node_v2x image_view v4l2_camera can_interface_custom cgi430_can_driver cgi610_driver ARS408_driver data_format_dump data_preprocess_launch lidar_centerpoint_collect lidar_saver message_sync time_cal camera_calibration direct_visual_lidar_calibration multi_lidar_calibration

Package Summary

Tags No category tags.
Version 1.0.0
License Apache 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/ieiauto/autodrrt.git
VCS Type git
VCS Version main
Last Updated 2024-09-19
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

MPC-based lateral controller

Additional Links

No additional links.

Maintainers

  • Takamasa Horibe
  • Takayuki Murooka

Authors

  • Takamasa Horibe
  • Maxime CLEMENT
  • Takayuki Murooka

MPC Lateral Controller

This is the design document for the lateral controller node in the trajectory_follower_node package.

Purpose / Use cases

This node is used to general lateral control commands (steering angle and steering rate) when following a path.

Design

The node uses an implementation of linear model predictive control (MPC) for accurate path tracking. The MPC uses a model of the vehicle to simulate the trajectory resulting from the control command. The optimization of the control command is formulated as a Quadratic Program (QP).

Different vehicle models are implemented:

  • kinematics : bicycle kinematics model with steering 1st-order delay.
  • kinematics_no_delay : bicycle kinematics model without steering delay.
  • dynamics : bicycle dynamics model considering slip angle. The kinematics model is being used by default. Please see the reference [1] for more details.

For the optimization, a Quadratic Programming (QP) solver is used and two options are currently implemented:

  • unconstraint_fast : use least square method to solve unconstraint QP with eigen.
  • osqp: run the following ADMM algorithm (for more details see the related papers at the Citing OSQP section):

Filtering

Filtering is required for good noise reduction. A Butterworth filter is employed for processing the yaw and lateral errors, which are used as inputs for the MPC, as well as for refining the output steering angle. Other filtering methods can be considered as long as the noise reduction performances are good enough. The moving average filter for example is not suited and can yield worse results than without any filtering.

Assumptions / Known limits

The tracking is not accurate if the first point of the reference trajectory is at or in front of the current ego pose.

Inputs / Outputs / API

Inputs

Set the following from the controller_node

  • autoware_auto_planning_msgs/Trajectory : reference trajectory to follow.
  • nav_msgs/Odometry: current odometry
  • autoware_auto_vehicle_msgs/SteeringReport: current steering

Outputs

Return LateralOutput which contains the following to the controller node

  • autoware_auto_control_msgs/AckermannLateralCommand
  • LateralSyncData
    • steer angle convergence

MPC class

The MPC class (defined in mpc.hpp) provides the interface with the MPC algorithm. Once a vehicle model, a QP solver, and the reference trajectory to follow have been set (using setVehicleModel(), setQPSolver(), setReferenceTrajectory()), a lateral control command can be calculated by providing the current steer, velocity, and pose to function calculateMPC().

Parameter description

The default parameters defined in param/lateral_controller_defaults.param.yaml are adjusted to the AutonomouStuff Lexus RX 450h for under 40 km/h driving.

System

Name Type Description Default value
traj_resample_dist double distance of waypoints in resampling [m] 0.1
use_steer_prediction boolean flag for using steer prediction (do not use steer measurement) false
admissible_position_error double stop vehicle when following position error is larger than this value [m] 5.0
admissible_yaw_error_rad double stop vehicle when following yaw angle error is larger than this value [rad] 1.57

Path Smoothing

Name Type Description Default value
enable_path_smoothing boolean path smoothing flag. This should be true when uses path resampling to reduce resampling noise. false
path_filter_moving_ave_num int number of data points moving average filter for path smoothing 25
curvature_smoothing_num_traj int index distance of points used in curvature calculation for trajectory: p(i-num), p(i), p(i+num). larger num makes less noisy values. 15
curvature_smoothing_num_ref_steer int index distance of points used in curvature calculation for reference steering command: p(i-num), p(i), p(i+num). larger num makes less noisy values. 15

Trajectory Extending

Name Type Description Default value
extend_trajectory_for_end_yaw_control boolean trajectory extending flag for end yaw control true

MPC Optimization

Name Type Description Default value
qp_solver_type string QP solver option. described below in detail. “osqp”
mpc_prediction_horizon int total prediction step for MPC 50
mpc_prediction_dt double prediction period for one step [s] 0.1
mpc_weight_lat_error double weight for lateral error 1.0
mpc_weight_heading_error double weight for heading error 0.0
mpc_weight_heading_error_squared_vel double weight for heading error * velocity 0.3
mpc_weight_steering_input double weight for steering error (steer command - reference steer) 1.0
mpc_weight_steering_input_squared_vel double weight for steering error (steer command - reference steer) * velocity 0.25
mpc_weight_lat_jerk double weight for lateral jerk (steer(i) - steer(i-1)) * velocity 0.1
mpc_weight_steer_rate double weight for steering rate [rad/s] 0.0
mpc_weight_steer_acc double weight for derivatives of the steering rate [rad/ss] 0.000001
mpc_low_curvature_weight_lat_error double [used in a low curvature trajectory] weight for lateral error 0.1
mpc_low_curvature_weight_heading_error double [used in a low curvature trajectory] weight for heading error 0.0
mpc_low_curvature_weight_heading_error_squared_vel double [used in a low curvature trajectory] weight for heading error * velocity 0.3
mpc_low_curvature_weight_steering_input double [used in a low curvature trajectory] weight for steering error (steer command - reference steer) 1.0
mpc_low_curvature_weight_steering_input_squared_vel double [used in a low curvature trajectory] weight for steering error (steer command - reference steer) * velocity 0.25
mpc_low_curvature_weight_lat_jerk double [used in a low curvature trajectory] weight for lateral jerk (steer(i) - steer(i-1)) * velocity 0.0
mpc_low_curvature_weight_steer_rate double [used in a low curvature trajectory] weight for steering rate [rad/s] 0.0
mpc_low_curvature_weight_steer_acc double [used in a low curvature trajectory] weight for derivatives of the steering rate [rad/ss] 0.000001
mpc_low_curvature_thresh_curvature double threshold of curvature to use “low_curvature” parameter 0.0
mpc_weight_terminal_lat_error double terminal lateral error weight in matrix Q to improve mpc stability 1.0
mpc_weight_terminal_heading_error double terminal heading error weight in matrix Q to improve mpc stability 0.1
mpc_zero_ff_steer_deg double threshold that feed-forward angle becomes zero 0.5
mpc_acceleration_limit double limit on the vehicle’s acceleration 2.0
mpc_velocity_time_constant double time constant used for velocity smoothing 0.3
mpc_min_prediction_length double minimum prediction length 5.0

Vehicle Model

Name Type Description Default value
vehicle_model_type string vehicle model type for mpc prediction “kinematics”
input_delay double steering input delay time for delay compensation 0.24
vehicle_model_steer_tau double steering dynamics time constant (1d approximation) [s] 0.3
steer_rate_lim_dps_list_by_curvature [double] steering angle rate limit list depending on curvature [deg/s] [40.0, 50.0, 60.0]
curvature_list_for_steer_rate_lim [double] curvature list for steering angle rate limit interpolation in ascending order [/m] [0.001, 0.002, 0.01]
steer_rate_lim_dps_list_by_velocity [double] steering angle rate limit list depending on velocity [deg/s] [60.0, 50.0, 40.0]
velocity_list_for_steer_rate_lim [double] velocity list for steering angle rate limit interpolation in ascending order [m/s] [10.0, 15.0, 20.0]
acceleration_limit double acceleration limit for trajectory velocity modification [m/ss] 2.0
velocity_time_constant double velocity dynamics time constant for trajectory velocity modification [s] 0.3

Lowpass Filter for Noise Reduction

Name Type Description Default value
steering_lpf_cutoff_hz double cutoff frequency of lowpass filter for steering output command [hz] 3.0
error_deriv_lpf_cutoff_hz double cutoff frequency of lowpass filter for error derivative [Hz] 5.0

Stop State

Name Type Description Default value
stop_state_entry_ego_speed *1 double threshold value of the ego vehicle speed used to the stop state entry condition 0.001
stop_state_entry_target_speed *1 double threshold value of the target speed used to the stop state entry condition 0.001
converged_steer_rad double threshold value of the steer convergence 0.1
keep_steer_control_until_converged boolean keep steer control until steer is converged true
new_traj_duration_time double threshold value of the time to be considered as new trajectory 1.0
new_traj_end_dist double threshold value of the distance between trajectory ends to be considered as new trajectory 0.3
mpc_converged_threshold_rps double threshold value to be sure output of the optimization is converged, it is used in stopped state 0.01

(*1) To prevent unnecessary steering movement, the steering command is fixed to the previous value in the stop state.

Steer Offset

Defined in the steering_offset namespace. This logic is designed as simple as possible, with minimum design parameters.

Name Type Description Default value
enable_auto_steering_offset_removal boolean Estimate the steering offset and apply compensation true
update_vel_threshold double If the velocity is smaller than this value, the data is not used for the offset estimation 5.56
update_steer_threshold double If the steering angle is larger than this value, the data is not used for the offset estimation. 0.035
average_num int The average of this number of data is used as a steering offset. 1000
steering_offset_limit double The angle limit to be applied to the offset compensation. 0.02
For dynamics model (WIP)
Name Type Description Default value
cg_to_front_m double distance from baselink to the front axle[m] 1.228
cg_to_rear_m double distance from baselink to the rear axle [m] 1.5618
mass_fl double mass applied to front left tire [kg] 600
mass_fr double mass applied to front right tire [kg] 600
mass_rl double mass applied to rear left tire [kg] 600
mass_rr double mass applied to rear right tire [kg] 600
cf double front cornering power [N/rad] 155494.663
cr double rear cornering power [N/rad] 155494.663

How to tune MPC parameters

Set kinematics information

First, it’s important to set the appropriate parameters for vehicle kinematics. This includes parameters like wheelbase, which represents the distance between the front and rear wheels, and max_steering_angle, which indicates the maximum tire steering angle. These parameters should be set in the vehicle_info.param.yaml.

Set dynamics information

Next, you need to set the proper parameters for the dynamics model. These include the time constant steering_tau and time delay steering_delay for steering dynamics, and the maximum acceleration mpc_acceleration_limit and the time constant mpc_velocity_time_constant for velocity dynamics.

Confirmation of the input information

It’s also important to make sure the input information is accurate. Information such as the velocity of the center of the rear wheel [m/s] and the steering angle of the tire [rad] is required. Please note that there have been frequent reports of performance degradation due to errors in input information. For instance, there are cases where the velocity of the vehicle is offset due to an unexpected difference in tire radius, or the tire angle cannot be accurately measured due to a deviation in the steering gear ratio or midpoint. It is suggested to compare information from multiple sensors (e.g., integrated vehicle speed and GNSS position, steering angle and IMU angular velocity), and ensure the input information for MPC is appropriate.

MPC weight tuning

Then, tune the weights of the MPC. One simple approach of tuning is to keep the weight for the lateral deviation (weight_lat_error) constant, and vary the input weight (weight_steering_input) while observing the trade-off between steering oscillation and control accuracy.

Here, weight_lat_error acts to suppress the lateral error in path following, while weight_steering_input works to adjust the steering angle to a standard value determined by the path’s curvature. When weight_lat_error is large, the steering moves significantly to improve accuracy, which can cause oscillations. On the other hand, when weight_steering_input is large, the steering doesn’t respond much to tracking errors, providing stable driving but potentially reducing tracking accuracy.

The steps are as follows:

  1. Set weight_lat_error = 0.1, weight_steering_input = 1.0 and other weights to 0.
  2. If the vehicle oscillates when driving, set weight_steering_input larger.
  3. If the tracking accuracy is low, set weight_steering_input smaller.

If you want to adjust the effect only in the high-speed range, you can use weight_steering_input_squared_vel. This parameter corresponds to the steering weight in the high-speed range.

Descriptions for weights

  • weight_lat_error: Reduce lateral tracking error. This acts like P gain in PID.
  • weight_heading_error: Make a drive straight. This acts like D gain in PID.
  • weight_heading_error_squared_vel_coeff : Make a drive straight in high speed range.
  • weight_steering_input: Reduce oscillation of tracking.
  • weight_steering_input_squared_vel_coeff: Reduce oscillation of tracking in high speed range.
  • weight_lat_jerk: Reduce lateral jerk.
  • weight_terminal_lat_error: Preferable to set a higher value than normal lateral weight weight_lat_error for stability.
  • weight_terminal_heading_error: Preferable to set a higher value than normal heading weight weight_heading_error for stability.

Other tips for tuning

Here are some tips for adjusting other parameters:

  • In theory, increasing terminal weights, weight_terminal_lat_error and weight_terminal_heading_error, can enhance the tracking stability. This method sometimes proves effective.
  • A larger prediction_horizon and a smaller prediction_sampling_time are efficient for tracking performance. However, these come at the cost of higher computational costs.
  • If you want to modify the weight according to the trajectory curvature (for instance, when you’re driving on a sharp curve and want a larger weight), use mpc_low_curvature_thresh_curvature and adjust mpc_low_curvature_weight_** weights.
  • If you want to adjust the steering rate limit based on the vehicle speed and trajectory curvature, you can modify the values of steer_rate_lim_dps_list_by_curvature, curvature_list_for_steer_rate_lim, steer_rate_lim_dps_list_by_velocity, velocity_list_for_steer_rate_lim. By doing this, you can enforce the steering rate limit during high-speed driving or relax it while curving.
  • In case your target curvature appears jagged, adjusting curvature_smoothing becomes critically important for accurate curvature calculations. A larger value yields a smooth curvature calculation which reduces noise but can cause delay in feedforward computation and potentially degrade performance.
  • Adjusting the steering_lpf_cutoff_hz value can also be effective to forcefully reduce computational noise. This refers to the cutoff frequency in the second order Butterworth filter installed in the final layer. The smaller the cutoff frequency, the stronger the noise reduction, but it also induce operation delay.
  • If the vehicle consistently deviates laterally from the trajectory, it’s most often due to the offset of the steering sensor or self-position estimation. It’s preferable to eliminate these biases before inputting into MPC, but it’s also possible to remove this bias within MPC. To utilize this, set enable_auto_steering_offset_removal to true and activate the steering offset remover. The steering offset estimation logic works when driving at high speeds with the steering close to the center, applying offset removal.
  • If the onset of steering in curves is late, it’s often due to incorrect delay time and time constant in the steering model. Please recheck the values of input_delay and vehicle_model_steer_tau. Additionally, as a part of its debug information, MPC outputs the current steering angle assumed by the MPC model, so please check if that steering angle matches the actual one.
  • [1] Jarrod M. Snider, “Automatic Steering Methods for Autonomous Automobile Path Tracking”, Robotics Institute, Carnegie Mellon University, February 2009.
CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged mpc_lateral_controller at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.