No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

pid_longitudinal_controller package from autodrrt repo

autonomous_emergency_braking control_performance_analysis control_validator external_cmd_selector joy_controller lane_departure_checker mpc_lateral_controller obstacle_collision_checker operation_mode_transition_manager pid_longitudinal_controller predicted_path_checker pure_pursuit shift_decider trajectory_follower_base trajectory_follower_node vehicle_cmd_gate diagnostic_converter kinematic_evaluator localization_evaluator planning_evaluator ekf_localizer geo_pose_projector gyro_odometer ar_tag_based_localizer landmark_manager localization_error_monitor localization_util ndt_scan_matcher pose2twist pose_initializer pose_instability_detector stop_filter tree_structured_parzen_estimator twist2accel yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer map_height_fitter map_loader map_projection_loader map_tf_generator lanelet2_map_preprocessor ros2_bevdet ros2_bevformer bevfusion bytetrack cluster_merger compare_map_segmentation crosswalk_traffic_light_estimator detected_object_feature_remover detected_object_validation detection_by_tracker elevation_map_loader euclidean_cluster front_vehicle_velocity_estimator ground_segmentation heatmap_visualizer image_projection_based_fusion lidar_apollo_instance_segmentation lidar_apollo_segmentation_tvm lidar_apollo_segmentation_tvm_nodes lidar_centerpoint lidar_centerpoint_tvm map_based_prediction multi_object_tracker object_merger object_range_splitter object_velocity_splitter occupancy_grid_map_outlier_filter probabilistic_occupancy_grid_map radar_crossing_objects_noise_filter radar_fusion_to_detected_object radar_object_clustering radar_object_tracker radar_tracks_msgs_converter shape_estimation simple_object_merger tensorrt_classifier tensorrt_yolo tensorrt_yolox tracking_object_merger traffic_light_arbiter traffic_light_classifier traffic_light_fine_detector traffic_light_map_based_detector traffic_light_multi_camera_fusion traffic_light_occlusion_predictor traffic_light_ssd_fine_detector traffic_light_visualization behavior_path_avoidance_by_lane_change_module behavior_path_avoidance_module behavior_path_external_request_lane_change_module behavior_path_goal_planner_module behavior_path_lane_change_module behavior_path_planner behavior_path_planner_common behavior_path_side_shift_module behavior_path_start_planner_module behavior_velocity_blind_spot_module behavior_velocity_crosswalk_module behavior_velocity_detection_area_module behavior_velocity_intersection_module behavior_velocity_no_drivable_lane_module behavior_velocity_no_stopping_area_module behavior_velocity_occlusion_spot_module behavior_velocity_out_of_lane_module behavior_velocity_planner behavior_velocity_planner_common behavior_velocity_run_out_module behavior_velocity_speed_bump_module behavior_velocity_stop_line_module behavior_velocity_template_module behavior_velocity_traffic_light_module behavior_velocity_virtual_traffic_light_module behavior_velocity_walkway_module costmap_generator external_velocity_limit_selector freespace_planner freespace_planning_algorithms mission_planner motion_velocity_smoother objects_of_interest_marker_interface obstacle_avoidance_planner obstacle_cruise_planner obstacle_stop_planner obstacle_velocity_limiter path_smoother planning_debug_tools planning_test_utils planning_topic_converter planning_validator route_handler rtc_interface rtc_replayer bezier_sampler frenet_planner path_sampler sampler_common scenario_selector static_centerline_optimizer surround_obstacle_checker gnss_poser image_diagnostics image_transport_decompressor imu_corrector livox_tag_filter pointcloud_preprocessor radar_scan_to_pointcloud2 radar_static_pointcloud_filter radar_threshold_filter radar_tracks_noise_filter tier4_pcl_extensions vehicle_velocity_converter autoware_auto_msgs_adapter bluetooth_monitor component_state_monitor default_ad_api ad_api_adaptors ad_api_visualizers automatic_pose_initializer diagnostic_graph_aggregator dummy_diag_publisher dummy_infrastructure duplicated_node_checker emergency_handler mrm_comfortable_stop_operator mrm_emergency_stop_operator system_error_monitor system_monitor topic_state_monitor velodyne_monitor accel_brake_map_calibrator external_cmd_converter raw_vehicle_cmd_converter steer_offset_estimator vehicle_info_util launch launch_ros autoware_ad_api_specs autoware_adapi_v1_msgs autoware_adapi_version_msgs autoware_auto_common autoware_auto_geometry autoware_auto_control_msgs autoware_auto_geometry_msgs autoware_auto_mapping_msgs autoware_auto_msgs autoware_auto_perception_msgs autoware_auto_planning_msgs autoware_auto_system_msgs autoware_auto_vehicle_msgs autoware_auto_perception_rviz_plugin autoware_auto_tf2 autoware_cmake autoware_lint_common autoware_utils lanelet2_extension autoware_common_msgs autoware_control_msgs autoware_localization_msgs autoware_map_msgs autoware_perception_msgs autoware_planning_msgs autoware_sensing_msgs autoware_system_msgs autoware_vehicle_msgs autoware_point_types autoware_testing bag_time_manager_rviz_plugin component_interface_specs component_interface_tools component_interface_utils cuda_utils fake_test_node geography_utils global_parameter_loader glog_component goal_distance_calculator grid_map_utils interpolation kalman_filter motion_utils object_recognition_utils osqp_interface path_distance_calculator perception_utils polar_grid qp_interface rtc_manager_rviz_plugin signal_processing tensorrt_common tier4_adapi_rviz_plugin tier4_api_utils tier4_automatic_goal_rviz_plugin tier4_autoware_utils tier4_calibration_rviz_plugin tier4_camera_view_rviz_plugin tier4_control_rviz_plugin tier4_datetime_rviz_plugin tier4_debug_rviz_plugin tier4_debug_tools tier4_localization_rviz_plugin tier4_perception_rviz_plugin tier4_planning_rviz_plugin tier4_screen_capture_rviz_plugin tier4_simulated_clock_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_target_object_type_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin time_utils simulator_compatibility_test traffic_light_recognition_marker_publisher traffic_light_utils tvm_utility dma_customer_msg dma_transfer eagleye_coordinate eagleye_navigation eagleye_msgs eagleye_rt eagleye_can_velocity_converter eagleye_fix2kml eagleye_geo_pose_converter eagleye_geo_pose_fusion eagleye_gnss_converter eagleye_tf llh_converter morai_msgs mussp ndt_omp orocos_kdl python_orocos_kdl pointcloud_to_laserscan rtklib_bridge rtklib_msgs autoware_external_api_msgs autoware_iv_external_api_adaptor autoware_iv_internal_api_adaptor awapi_awiv_adapter tier4_api_msgs tier4_auto_msgs_converter tier4_control_msgs tier4_debug_msgs tier4_external_api_msgs tier4_hmi_msgs tier4_localization_msgs tier4_map_msgs tier4_perception_msgs tier4_planning_msgs tier4_rtc_msgs tier4_simulation_msgs tier4_system_msgs tier4_v2x_msgs tier4_vehicle_msgs io_opt tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch fastrtps cyclonedds lanelet2 lanelet2_core lanelet2_examples lanelet2_io lanelet2_maps lanelet2_matching lanelet2_projection lanelet2_python lanelet2_routing lanelet2_traffic_rules lanelet2_validation sophus angles behaviortree_cpp_v3 bond bond_core bondcpp bondpy smclib test_bond cudnn_cmake_module diagnostic_aggregator diagnostic_common_diagnostics diagnostic_updater diagnostics self_test filters geodesy geographic_info geographic_msgs grid_map grid_map_cmake_helpers grid_map_core grid_map_costmap_2d grid_map_cv grid_map_demos grid_map_filters grid_map_loader grid_map_msgs grid_map_octomap grid_map_pcl grid_map_ros grid_map_rviz_plugin grid_map_sdf grid_map_visualization mrt_cmake_modules nav2_amcl nav2_behavior_tree nav2_behaviors nav2_bringup nav2_bt_navigator nav2_collision_monitor nav2_common nav2_controller nav2_core nav2_costmap_2d costmap_queue dwb_core dwb_critics dwb_msgs dwb_plugins nav2_dwb_controller nav_2d_msgs nav_2d_utils nav2_lifecycle_manager nav2_map_server nav2_msgs nav2_navfn_planner nav2_planner nav2_regulated_pure_pursuit_controller nav2_rotation_shim_controller nav2_rviz_plugins nav2_simple_commander nav2_smac_planner nav2_smoother nav2_system_tests nav2_theta_star_planner nav2_util nav2_velocity_smoother nav2_voxel_grid nav2_waypoint_follower navigation2 dynamic_edt_3d octomap octovis octomap_msgs osqp_vendor pacmod3_msgs pcl_msgs pcl_conversions pcl_ros perception_pcl point_cloud_msg_wrapper radar_msgs can_msgs rqt_tf_tree tensorrt_cmake_module topic_tools topic_tools_interfaces tvm_vendor cv_bridge image_geometry opencv_tests vision_opencv xacro rviz2 rviz_assimp_vendor rviz_common rviz_default_plugins rviz_ogre_vendor rviz_rendering rviz_rendering_tests rviz_visual_testing_framework dummy_perception_publisher fault_injection simple_planning_simulator classformsg node_v2x image_view v4l2_camera can_interface_custom cgi430_can_driver cgi610_driver ARS408_driver data_format_dump data_preprocess_launch lidar_centerpoint_collect lidar_saver message_sync time_cal camera_calibration direct_visual_lidar_calibration multi_lidar_calibration

Package Summary

Tags No category tags.
Version 1.0.0
License Apache 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/ieiauto/autodrrt.git
VCS Type git
VCS Version main
Last Updated 2024-09-19
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

PID-based longitudinal controller

Additional Links

No additional links.

Maintainers

  • Takamasa Horibe
  • Takayuki Murooka

Authors

  • Takamasa Horibe
  • Maxime CLEMENT
  • Takayuki Murooka

PID Longitudinal Controller

Purpose / Use cases

The longitudinal_controller computes the target acceleration to achieve the target velocity set at each point of the target trajectory using a feed-forward/back control.

It also contains a slope force correction that takes into account road slope information, and a delay compensation function. It is assumed that the target acceleration calculated here will be properly realized by the vehicle interface.

Note that the use of this module is not mandatory for Autoware if the vehicle supports the “target speed” interface.

Design / Inner-workings / Algorithms

States

This module has four state transitions as shown below in order to handle special processing in a specific situation.

  • DRIVE
    • Executes target velocity tracking by PID control.
    • It also applies the delay compensation and slope compensation.
  • STOPPING
    • Controls the motion just before stopping.
    • Special sequence is performed to achieve accurate and smooth stopping.
  • STOPPED
    • Performs operations in the stopped state (e.g. brake hold)
  • EMERGENCY.
    • Enters an emergency state when certain conditions are met (e.g., when the vehicle has crossed a certain distance of a stop line).
    • The recovery condition (whether or not to keep emergency state until the vehicle completely stops) or the deceleration in the emergency state are defined by parameters.

The state transition diagram is shown below.

LongitudinalControllerStateTransition

Logics

Control Block Diagram

LongitudinalControllerDiagram

FeedForward (FF)

The reference acceleration set in the trajectory and slope compensation terms are output as a feedforward. Under ideal conditions with no modeling error, this FF term alone should be sufficient for velocity tracking.

Tracking errors causing modeling or discretization errors are removed by the feedback control (now using PID).

Brake keeping

From the viewpoint of ride comfort, stopping with 0 acceleration is important because it reduces the impact of braking. However, if the target acceleration when stopping is 0, the vehicle may cross over the stop line or accelerate a little in front of the stop line due to vehicle model error or gradient estimation error.

For reliable stopping, the target acceleration calculated by the FeedForward system is limited to a negative acceleration when stopping.

BrakeKeepingDiagram

Slope compensation

Based on the slope information, a compensation term is added to the target acceleration.

There are two sources of the slope information, which can be switched by a parameter.

  • Pitch of the estimated ego-pose (default)
    • Calculates the current slope from the pitch angle of the estimated ego-pose
    • Pros: Easily available
    • Cons: Cannot extract accurate slope information due to the influence of vehicle vibration.
  • Z coordinate on the trajectory
    • Calculates the road slope from the difference of z-coordinates between the front and rear wheel positions in the target trajectory
    • Pros: More accurate than pitch information, if the z-coordinates of the route are properly maintained
    • Pros: Can be used in combination with delay compensation (not yet implemented)
    • Cons: z-coordinates of high-precision map is needed.
    • Cons: Does not support free space planning (for now)

Notation: This function works correctly only in a vehicle system that does not have acceleration feedback in the low-level control system.

This compensation adds gravity correction to the target acceleration, resulting in an output value that is no longer equal to the target acceleration that the autonomous driving system desires. Therefore, it conflicts with the role of the acceleration feedback in the low-level controller. For instance, if the vehicle is attempting to start with an acceleration of 1.0 m/s^2 and a gravity correction of -1.0 m/s^2 is applied, the output value will be 0. If this output value is mistakenly treated as the target acceleration, the vehicle will not start.

A suitable example of a vehicle system for the slope compensation function is one in which the output acceleration from the longitudinal_controller is converted into target accel/brake pedal input without any feedbacks. In this case, the output acceleration is just used as a feedforward term to calculate the target pedal, and hence the issue mentioned above does not arise.

Note: The angle of the slope is defined as positive for an uphill slope, while the pitch angle of the ego pose is defined as negative when facing upward. They have an opposite definition.

slope_definition

PID control

For deviations that cannot be handled by FeedForward control, such as model errors, PID control is used to construct a feedback system.

This PID control calculates the target acceleration from the deviation between the current ego-velocity and the target velocity.

This PID logic has a maximum value for the output of each term. This is to prevent the following:

  • Large integral terms may cause unintended behavior by users.
  • Unintended noise may cause the output of the derivative term to be very large.

Note: by default, the integral term in the control system is not accumulated when the vehicle is stationary. This precautionary measure aims to prevent unintended accumulation of the integral term in scenarios where Autoware assumes the vehicle is engaged, but an external system has immobilized the vehicle to initiate startup procedures.

However, certain situations may arise, such as when the vehicle encounters a depression in the road surface during startup or if the slope compensation is inaccurately estimated (lower than necessary), leading to a failure to initiate motion. To address these scenarios, it is possible to activate error integration even when the vehicle is at rest by setting the enable_integration_at_low_speed parameter to true.

When enable_integration_at_low_speed is set to true, the PID controller will initiate integration of the acceleration error after a specified duration defined by the time_threshold_before_pid_integration parameter has elapsed without the vehicle surpassing a minimum velocity set by the current_vel_threshold_pid_integration parameter.

The presence of the time_threshold_before_pid_integration parameter is important for practical PID tuning. Integrating the error when the vehicle is stationary or at low speed can complicate PID tuning. This parameter effectively introduces a delay before the integral part becomes active, preventing it from kicking in immediately. This delay allows for more controlled and effective tuning of the PID controller.

At present, PID control is implemented from the viewpoint of trade-off between development/maintenance cost and performance. This may be replaced by a higher performance controller (adaptive control or robust control) in future development.

Time delay compensation

At high speeds, the delay of actuator systems such as gas pedals and brakes has a significant impact on driving accuracy. Depending on the actuating principle of the vehicle, the mechanism that physically controls the gas pedal and brake typically has a delay of about a hundred millisecond.

In this controller, the predicted ego-velocity and the target velocity after the delay time are calculated and used for the feedback to address the time delay problem.

Slope compensation

Based on the slope information, a compensation term is added to the target acceleration.

There are two sources of the slope information, which can be switched by a parameter.

  • Pitch of the estimated ego-pose (default)
    • Calculates the current slope from the pitch angle of the estimated ego-pose
    • Pros: Easily available
    • Cons: Cannot extract accurate slope information due to the influence of vehicle vibration.
  • Z coordinate on the trajectory
    • Calculates the road slope from the difference of z-coordinates between the front and rear wheel positions in the target trajectory
    • Pros: More accurate than pitch information, if the z-coordinates of the route are properly maintained
    • Pros: Can be used in combination with delay compensation (not yet implemented)
    • Cons: z-coordinates of high-precision map is needed.
    • Cons: Does not support free space planning (for now)

Assumptions / Known limits

  1. Smoothed target velocity and its acceleration shall be set in the trajectory
    1. The velocity command is not smoothed inside the controller (only noise may be removed).
    2. For step-like target signal, tracking is performed as fast as possible.
  2. The vehicle velocity must be an appropriate value
    1. The ego-velocity must be a signed-value corresponding to the forward/backward direction
    2. The ego-velocity should be given with appropriate noise processing.
    3. If there is a large amount of noise in the ego-velocity, the tracking performance will be significantly reduced.
  3. The output of this controller must be achieved by later modules (e.g. vehicle interface).
    1. If the vehicle interface does not have the target velocity or acceleration interface (e.g., the vehicle only has a gas pedal and brake interface), an appropriate conversion must be done after this controller.

Inputs / Outputs / API

Input

Set the following from the controller_node

  • autoware_auto_planning_msgs/Trajectory : reference trajectory to follow.
  • nav_msgs/Odometry: current odometry

Output

Return LongitudinalOutput which contains the following to the controller node

  • autoware_auto_control_msgs/LongitudinalCommand: command to control the longitudinal motion of the vehicle. It contains the target velocity and target acceleration.
  • LongitudinalSyncData
    • velocity convergence(currently not used)

PIDController class

The PIDController class is straightforward to use. First, gains and limits must be set (using setGains() and setLimits()) for the proportional (P), integral (I), and derivative (D) components. Then, the velocity can be calculated by providing the current error and time step duration to the calculate() function.

Parameter description

The default parameters defined in param/lateral_controller_defaults.param.yaml are adjusted to the AutonomouStuff Lexus RX 450h for under 40 km/h driving.

Name Type Description Default value
delay_compensation_time double delay for longitudinal control [s] 0.17
enable_smooth_stop bool flag to enable transition to STOPPING true
enable_overshoot_emergency bool flag to enable transition to EMERGENCY when the ego is over the stop line with a certain distance. See emergency_state_overshoot_stop_dist. true
enable_large_tracking_error_emergency bool flag to enable transition to EMERGENCY when the closest trajectory point search is failed due to a large deviation between trajectory and ego pose. true
enable_slope_compensation bool flag to modify output acceleration for slope compensation. The source of the slope angle can be selected from ego-pose or trajectory angle. See use_trajectory_for_pitch_calculation. true
enable_brake_keeping_before_stop bool flag to keep a certain acceleration during DRIVE state before the ego stops. See Brake keeping. false
enable_keep_stopped_until_steer_convergence bool flag to keep stopped condition until until the steer converges. true
max_acc double max value of output acceleration [m/s^2] 3.0
min_acc double min value of output acceleration [m/s^2] -5.0
max_jerk double max value of jerk of output acceleration [m/s^3] 2.0
min_jerk double min value of jerk of output acceleration [m/s^3] -5.0
use_trajectory_for_pitch_calculation bool If true, the slope is estimated from trajectory z-level. Otherwise the pitch angle of the ego pose is used. false
lpf_pitch_gain double gain of low-pass filter for pitch estimation 0.95
max_pitch_rad double max value of estimated pitch [rad] 0.1
min_pitch_rad double min value of estimated pitch [rad] -0.1

State transition

Name Type Description Default value
drive_state_stop_dist double The state will transit to DRIVE when the distance to the stop point is longer than drive_state_stop_dist + drive_state_offset_stop_dist [m] 0.5
drive_state_offset_stop_dist double The state will transit to DRIVE when the distance to the stop point is longer than drive_state_stop_dist + drive_state_offset_stop_dist [m] 1.0
stopping_state_stop_dist double The state will transit to STOPPING when the distance to the stop point is shorter than stopping_state_stop_dist [m] 0.5
stopped_state_entry_vel double threshold of the ego velocity in transition to the STOPPED state [m/s] 0.01
stopped_state_entry_acc double threshold of the ego acceleration in transition to the STOPPED state [m/s^2] 0.1
emergency_state_overshoot_stop_dist double If enable_overshoot_emergency is true and the ego is emergency_state_overshoot_stop_dist-meter ahead of the stop point, the state will transit to EMERGENCY. [m] 1.5
emergency_state_traj_trans_dev double If the ego’s position is emergency_state_traj_tran_dev meter away from the nearest trajectory point, the state will transit to EMERGENCY. [m] 3.0
emergency_state_traj_rot_dev double If the ego’s orientation is emergency_state_traj_rot_dev rad away from the nearest trajectory point orientation, the state will transit to EMERGENCY. [rad] 0.784

DRIVE Parameter

Name Type Description Default value
kp double p gain for longitudinal control 1.0
ki double i gain for longitudinal control 0.1
kd double d gain for longitudinal control 0.0
max_out double max value of PID’s output acceleration during DRIVE state [m/s^2] 1.0
min_out double min value of PID’s output acceleration during DRIVE state [m/s^2] -1.0
max_p_effort double max value of acceleration with p gain 1.0
min_p_effort double min value of acceleration with p gain -1.0
max_i_effort double max value of acceleration with i gain 0.3
min_i_effort double min value of acceleration with i gain -0.3
max_d_effort double max value of acceleration with d gain 0.0
min_d_effort double min value of acceleration with d gain 0.0
lpf_vel_error_gain double gain of low-pass filter for velocity error 0.9
enable_integration_at_low_speed bool Whether to enable integration of acceleration errors when the vehicle speed is lower than current_vel_threshold_pid_integration or not.  
current_vel_threshold_pid_integration double Velocity error is integrated for I-term only when the absolute value of current velocity is larger than this parameter. [m/s]  
time_threshold_before_pid_integration double How much time without the vehicle moving must past to enable PID error integration. [s] 5.0
brake_keeping_acc double If enable_brake_keeping_before_stop is true, a certain acceleration is kept during DRIVE state before the ego stops [m/s^2] See Brake keeping. 0.2

STOPPING Parameter (smooth stop)

Smooth stop is enabled if enable_smooth_stop is true. In smooth stop, strong acceleration (strong_acc) will be output first to decrease the ego velocity. Then weak acceleration (weak_acc) will be output to stop smoothly by decreasing the ego jerk. If the ego does not stop in a certain time or some-meter over the stop point, weak acceleration to stop right (weak_stop_acc) now will be output. If the ego is still running, strong acceleration (strong_stop_acc) to stop right now will be output.

Name Type Description Default value
smooth_stop_max_strong_acc double max strong acceleration [m/s^2] -0.5
smooth_stop_min_strong_acc double min strong acceleration [m/s^2] -0.8
smooth_stop_weak_acc double weak acceleration [m/s^2] -0.3
smooth_stop_weak_stop_acc double weak acceleration to stop right now [m/s^2] -0.8
smooth_stop_strong_stop_acc double strong acceleration to be output when the ego is smooth_stop_strong_stop_dist-meter over the stop point. [m/s^2] -3.4
smooth_stop_max_fast_vel double max fast vel to judge the ego is running fast [m/s]. If the ego is running fast, strong acceleration will be output. 0.5
smooth_stop_min_running_vel double min ego velocity to judge if the ego is running or not [m/s] 0.01
smooth_stop_min_running_acc double min ego acceleration to judge if the ego is running or not [m/s^2] 0.01
smooth_stop_weak_stop_time double max time to output weak acceleration [s]. After this, strong acceleration will be output. 0.8
smooth_stop_weak_stop_dist double Weak acceleration will be output when the ego is smooth_stop_weak_stop_dist-meter before the stop point. [m] -0.3
smooth_stop_strong_stop_dist double Strong acceleration will be output when the ego is smooth_stop_strong_stop_dist-meter over the stop point. [m] -0.5

STOPPED Parameter

Name Type Description Default value
stopped_vel double target velocity in STOPPED state [m/s] 0.0
stopped_acc double target acceleration in STOPPED state [m/s^2] -3.4
stopped_jerk double target jerk in STOPPED state [m/s^3] -5.0

EMERGENCY Parameter

Name Type Description Default value
emergency_vel double target velocity in EMERGENCY state [m/s] 0.0
emergency_acc double target acceleration in an EMERGENCY state [m/s^2] -5.0
emergency_jerk double target jerk in an EMERGENCY state [m/s^3] -3.0

Future extensions / Unimplemented parts

CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged pid_longitudinal_controller at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.