No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

autoware_perception_online_evaluator package from autoware_universe repo

autoware_adapi_specs autoware_agnocast_wrapper autoware_auto_common autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_gyro_odometer autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_ndt_scan_matcher autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_initializer autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_lanelet2_map_visualizer autoware_map_height_fitter autoware_map_tf_generator autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_crossing_objects_noise_filter autoware_radar_fusion_to_detected_object autoware_radar_object_clustering autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simple_object_merger autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_mission_planner_universe autoware_obstacle_cruise_planner autoware_obstacle_stop_planner autoware_path_optimizer autoware_path_smoother autoware_planning_validator autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_component_monitor autoware_component_state_monitor autoware_default_adapi autoware_adapi_adaptors autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_processing_time_checker autoware_system_diagnostic_monitor autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_mission_details_overlay_rviz_plugin autoware_overlay_rviz_plugin autoware_string_stamped_rviz_plugin autoware_perception_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_datetime_rviz_plugin tier4_localization_rviz_plugin tier4_planning_factor_rviz_plugin tier4_planning_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

Package Summary

Tags No category tags.
Version 0.43.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-04-04
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

ROS 2 node for evaluating perception

Additional Links

No additional links.

Maintainers

  • Fumiya Watanabe
  • Kosuke Takeuchi
  • Kotaro Uetake
  • Kyoichi Sugahara
  • Yoshi Ri
  • Junya Sasaki

Authors

  • Kosuke Takeuchi

Perception Evaluator

A node for evaluating the output of perception systems.

Purpose

This module allows for the evaluation of how accurately perception results are generated without the need for annotations. It is capable of confirming performance and can evaluate results from a few seconds prior, enabling online execution.

Inner-workings / Algorithms

The evaluated metrics are as follows:

  • predicted_path_deviation
  • predicted_path_deviation_variance
  • lateral_deviation
  • yaw_deviation
  • yaw_rate
  • total_objects_count
  • average_objects_count
  • interval_objects_count

Predicted Path Deviation / Predicted Path Deviation Variance

Compare the predicted path of past objects with their actual traveled path to determine the deviation for MOVING OBJECTS. For each object, calculate the mean distance between the predicted path points and the corresponding points on the actual path, up to the specified time step. In other words, this calculates the Average Displacement Error (ADE). The target object to be evaluated is the object from $T_N$ seconds ago, where $T_N$ is the maximum value of the prediction time horizon $[T_1, T_2, …, T_N]$.

[!NOTE] The object from $T_N$ seconds ago is the target object for all metrics. This is to unify the time of the target object across metrics.

path_deviation_each_object

\[\begin{align} n_{points} = T / dt \\ ADE = \Sigma_{i=1}^{n_{points}} d_i / n_{points} \\ Var = \Sigma_{i=1}^{n_{points}} (d_i - ADE)^2 / n_{points} \end{align}\]
  • $n_{points}$ : Number of points in the predicted path
  • $T$ : Time horizon for prediction evaluation.
  • $dt$ : Time interval of the predicted path
  • $d_i$ : Distance between the predicted path and the actual traveled path at path point $i$
  • $ADE$ : Mean deviation of the predicted path for the target object.
  • $Var$ : Variance of the predicted path deviation for the target object.

The final predicted path deviation metrics are calculated by averaging the mean deviation of the predicted path for all objects of the same class, and then calculating the mean, maximum, and minimum values of the mean deviation.

path_deviation

\[\begin{align} ADE_{mean} = \Sigma_{j=1}^{n_{objects}} ADE_j / n_{objects} \\ ADE_{max} = max(ADE_j) \\ ADE_{min} = min(ADE_j) \end{align}\] \[\begin{align} Var_{mean} = \Sigma_{j=1}^{n_{objects}} Var_j / n_{objects} \\ Var_{max} = max(Var_j) \\ Var_{min} = min(Var_j) \end{align}\]
  • $n_{objects}$ : Number of objects
  • $ADE_{mean}$ : Mean deviation of the predicted path through all objects
  • $ADE_{max}$ : Maximum deviation of the predicted path through all objects
  • $ADE_{min}$ : Minimum deviation of the predicted path through all objects
  • $Var_{mean}$ : Mean variance of the predicted path deviation through all objects
  • $Var_{max}$ : Maximum variance of the predicted path deviation through all objects
  • $Var_{min}$ : Minimum variance of the predicted path deviation through all objects

The actual metric name is determined by the object class and time horizon. For example, predicted_path_deviation_variance_CAR_5.00

Lateral Deviation

Calculates lateral deviation between the smoothed traveled trajectory and the perceived position to evaluate the stability of lateral position recognition for MOVING OBJECTS. The smoothed traveled trajectory is calculated by applying a centered moving average filter whose window size is specified by the parameter smoothing_window_size. The lateral deviation is calculated by comparing the smoothed traveled trajectory with the perceived position of the past object whose timestamp is $T=T_n$ seconds ago. For stopped objects, the smoothed traveled trajectory is unstable, so this metric is not calculated.

lateral_deviation

Yaw Deviation

Calculates the deviation between the recognized yaw angle of an past object and the yaw azimuth angle of the smoothed traveled trajectory for MOVING OBJECTS. The smoothed traveled trajectory is calculated by applying a centered moving average filter whose window size is specified by the parameter smoothing_window_size. The yaw deviation is calculated by comparing the yaw azimuth angle of smoothed traveled trajectory with the perceived orientation of the past object whose timestamp is $T=T_n$ seconds ago. For stopped objects, the smoothed traveled trajectory is unstable, so this metric is not calculated.

yaw_deviation

Yaw Rate

Calculates the yaw rate of an object based on the change in yaw angle from the previous time step. It is evaluated for STATIONARY OBJECTS and assesses the stability of yaw rate recognition. The yaw rate is calculated by comparing the yaw angle of the past object with the yaw angle of the object received in the previous cycle. Here, t2 is the timestamp that is $T_n$ seconds ago.

yaw_rate

Object Counts

Counts the number of detections for each object class within the specified detection range. These metrics are measured for the most recent object not past objects.

detection_counts

In the provided illustration, the range $R$ is determined by a combination of lists of radii (e.g., $r_1, r_2, \ldots$) and heights (e.g., $h_1, h_2, \ldots$). For example,

  • the number of CAR in range $R = (r_1, h_1)$ equals 1
  • the number of CAR in range $R = (r_1, h_2)$ equals 2
  • the number of CAR in range $R = (r_2, h_1)$ equals 3
  • the number of CAR in range $R = (r_2, h_2)$ equals 4

Total Object Count

Counts the number of unique objects for each class within the specified detection range. The total object count is calculated as follows:

\[\begin{align} \text{Total Object Count (Class, Range)} = \left| \bigcup_{t=0}^{T_{\text{now}}} \{ \text{uuid} \mid \text{class}(t, \text{uuid}) = C \wedge \text{position}(t, \text{uuid}) \in R \} \right| \end{align}\]

where:

  • $\bigcup$ represents the union across all frames from $t = 0$ to $T_{\text{now}}$, which ensures that each uuid is counted only once.
  • $\text{class}(t, \text{uuid}) = C$ specifies that the object with uuid at time $t$ belongs to class $C$.
  • $\text{position}(t, \text{uuid}) \in R$ indicates that the object with uuid at time $t$ is within the specified range $R$.
  • $\left { \ldots } \right $ denotes the cardinality of the set, which counts the number of unique uuids that meet the class and range criteria across all considered times.

Average Object Count

Counts the average number of objects for each class within the specified detection range. This metric measures how many objects were detected in one frame, without considering uuids. The average object count is calculated as follows:

\[\begin{align} \text{Average Object Count (Class, Range)} = \frac{1}{N} \sum_{t=0}^{T_{\text{now}}} \left| \{ \text{object} \mid \text{class}(t, \text{object}) = C \wedge \text{position}(t, \text{object}) \in R \} \right| \end{align}\]

where:

  • $N$ represents the total number of frames within the time period time to $T_{\text{now}}$ (it is precisely detection_count_purge_seconds)
  • $text{object}$ denotes the number of objects that meet the class and range criteria at time $t$.

Interval Object Count

Counts the average number of objects for each class within the specified detection range over the last objects_count_window_seconds. This metric measures how many objects were detected in one frame, without considering uuids. The interval object count is calculated as follows:

\[\begin{align} \text{Interval Object Count (Class, Range)} = \frac{1}{W} \sum_{t=T_{\text{now}} - T_W}^{T_{\text{now}}} \left| \{ \text{object} \mid \text{class}(t, \text{object}) = C \wedge \text{position}(t, \text{object}) \in R \} \right| \end{align}\]

where:

  • $W$ represents the total number of frames within the last objects_count_window_seconds.
  • $T_W$ represents the time window objects_count_window_seconds

Inputs / Outputs

Name Type Description
~/input/objects autoware_perception_msgs::msg::PredictedObjects The predicted objects to evaluate.
~/metrics tier4_metric_msgs::msg::MetricArray Metric information about perception accuracy.
~/markers visualization_msgs::msg::MarkerArray Visual markers for debugging and visualization.

Parameters

Name Type Description
selected_metrics List Metrics to be evaluated, such as lateral deviation, yaw deviation, and predicted path deviation.
smoothing_window_size Integer Determines the window size for smoothing path, should be an odd number.
prediction_time_horizons list[double] Time horizons for prediction evaluation in seconds.
stopped_velocity_threshold double threshold velocity to check if vehicle is stopped
detection_radius_list list[double] Detection radius for objects to be evaluated.(used for objects count only)
detection_height_list list[double] Detection height for objects to be evaluated. (used for objects count only)
detection_count_purge_seconds double Time window for purging object detection counts.
objects_count_window_seconds double Time window for keeping object detection counts. The number of object detections within this time window is stored in detection_count_vector_
target_object.*.check_lateral_deviation bool Whether to check lateral deviation for specific object types (car, truck, etc.).
target_object.*.check_yaw_deviation bool Whether to check yaw deviation for specific object types (car, truck, etc.).
target_object.*.check_predicted_path_deviation bool Whether to check predicted path deviation for specific object types (car, truck, etc.).
target_object.*.check_yaw_rate bool Whether to check yaw rate for specific object types (car, truck, etc.).
target_object.*.check_total_objects_count bool Whether to check total object count for specific object types (car, truck, etc.).
target_object.*.check_average_objects_count bool Whether to check average object count for specific object types (car, truck, etc.).
target_object.*.check_interval_average_objects_count bool Whether to check interval average object count for specific object types (car, truck, etc.).
debug_marker.* bool Debugging parameters for marker visualization (history path, predicted path, etc.).

Assumptions / Known limits

It is assumed that the current positions of PredictedObjects are reasonably accurate.

Future extensions / Unimplemented parts

  • Increase rate in recognition per class
  • Metrics for objects with strange physical behavior (e.g., going through a fence)
  • Metrics for splitting objects
  • Metrics for problems with objects that are normally stationary but move
  • Disappearing object metrics
CHANGELOG

\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^ Changelog for package autoware_perception_online_evaluator \^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^\^

0.43.0 (2025-03-21)

  • Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
  • chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
  • Contributors: Hayato Mizushima, Yutaka Kondo

0.42.0 (2025-03-03)

  • Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
  • feat(autoware_utils): replace autoware_universe_utils with autoware_utils (#10191)
  • chore: refine maintainer list (#10110)
    • chore: remove Miura from maintainer

    * chore: add Taekjin-san to perception_utils package maintainer ---------

  • feat(autoware_vehicle_info_utils): replace autoware_universe_utils with autoware_utils (#10167)
  • Contributors: Fumiya Watanabe, Ryohsuke Mitsudome, Shunsuke Miura, 心刚

0.41.2 (2025-02-19)

  • chore: bump version to 0.41.1 (#10088)
  • Contributors: Ryohsuke Mitsudome

0.41.1 (2025-02-10)

0.41.0 (2025-01-29)

  • Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
  • feat: apply [autoware_]{.title-ref} prefix for [perception_online_evaluator]{.title-ref} (#9956)
    • feat(perception_online_evaluator): apply [autoware_]{.title-ref} prefix (see below):

    * In this commit, I did not organize a folder structure. The folder structure will be organized in the next some commits.

    • The changes will follow the Autoware's guideline as below:
    • https://autowarefoundation.github.io/autoware-documentation/main/contributing/coding-guidelines/ros-nodes/directory-structure/#package-folder
    • bug(perception_online_evaluator): remove duplicated properties
    • It seems the [motion_evaluator]{.title-ref} is defined and used in the [autoware_planning_evaluator]{.title-ref}
    • rename(perception_online_evaluator): move headers under `include/autoware`:
    • Fixes due to this changes for .hpp/.cpp files will be applied in the next commit
    • fix(perception_online_evaluator): fix include paths
    • To follow the previous commit
    • rename: [perception_online_evaluator]{.title-ref} => [autoware_perception_online_evaluator]{.title-ref}
    • style(pre-commit): autofix
    • bug(autoware_perception_online_evaluator): revert wrongly updated copyright
    • bug(autoware_perception_online_evaluator): [autoware_]{.title-ref} prefix is not needed here
    • update: [CODEOWNERS]{.title-ref}

    * bug(autoware_perception_online_evaluator): fix a wrong package name ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com>

  • Contributors: Fumiya Watanabe, Junya Sasaki

0.40.0 (2024-12-12)

  • Merge branch 'main' into release-0.40.0
  • Revert "chore(package.xml): bump version to 0.39.0 (#9587)" This reverts commit c9f0f2688c57b0f657f5c1f28f036a970682e7f5.
  • fix: fix ticket links in CHANGELOG.rst (#9588)
  • chore(package.xml): bump version to 0.39.0 (#9587)
    • chore(package.xml): bump version to 0.39.0
    • fix: fix ticket links in CHANGELOG.rst

    * fix: remove unnecessary diff ---------Co-authored-by: Yutaka Kondo <<yutaka.kondo@youtalk.jp>>

  • fix: fix ticket links in CHANGELOG.rst (#9588)
  • fix(cpplint): include what you use - evaluator (#9566)
  • refactor(perception_online_evaluator): use tier4_metric_msgs instead of diagnostic_msgs (#9485)
  • refactor(evaluators, autoware_universe_utils): rename Stat class to Accumulator and move it to autoware_universe_utils (#9459)
    • add Accumulator class to autoware_universe_utils
    • use Accumulator on all evaluators.
    • pre-commit
    • found and fixed a bug. add more tests.
    • pre-commit

    * Update common/autoware_universe_utils/include/autoware/universe_utils/math/accumulator.hpp Co-authored-by: Kosuke Takeuchi <<kosuke.tnp@gmail.com>> ---------Co-authored-by: Kosuke Takeuchi <<kosuke.tnp@gmail.com>>

  • 0.39.0
  • update changelog
  • fix: fix ticket links to point to https://github.com/autowarefoundation/autoware_universe (#9304)
  • fix(evaluator): missing dependency in evaluator components (#9074)
  • fix: fix ticket links to point to https://github.com/autowarefoundation/autoware_universe (#9304)
  • chore(package.xml): bump version to 0.38.0 (#9266) (#9284)
    • unify package.xml version to 0.37.0
    • remove system_monitor/CHANGELOG.rst
    • add changelog

    * 0.38.0

  • Contributors: Esteve Fernandez, Fumiya Watanabe, Kem (TiankuiXian), Kotaro Uetake, M. Fatih Cırıt, Ryohsuke Mitsudome, Yutaka Kondo, ぐるぐる

0.39.0 (2024-11-25)

0.38.0 (2024-11-08)

  • unify package.xml version to 0.37.0
  • refactor(object_recognition_utils): add autoware prefix to object_recognition_utils (#8946)
  • fix(perception_online_evaluator): fix unusedFunction (#8559) fix:unusedFunction
  • feat(evalautor): rename evaluator diag topics (#8152)
    • feat(evalautor): rename evaluator diag topics

    * perception ---------

  • fix(perception_online_evaluator): passedByValue (#8201) fix: passedByValue
  • fix(perception_online_evaluator): fix shadowVariable (#7933)
    • fix:shadowVariable
    • fix:clang-format

    * fix:shadowVariable ---------

  • feat: add [autoware_]{.title-ref} prefix to [lanelet2_extension]{.title-ref} (#7640)
  • refactor(universe_utils/motion_utils)!: add autoware namespace (#7594)
  • refactor(motion_utils)!: add autoware prefix and include dir (#7539) refactor(motion_utils): add autoware prefix and include dir
  • feat(autoware_universe_utils)!: rename from tier4_autoware_utils (#7538) Co-authored-by: kosuke55 <<kosuke.tnp@gmail.com>>
  • refactor(vehicle_info_utils)!: prefix package and namespace with autoware (#7353)
    • chore(autoware_vehicle_info_utils): rename header
    • chore(bpp-common): vehicle info
    • chore(path_optimizer): vehicle info
    • chore(velocity_smoother): vehicle info
    • chore(bvp-common): vehicle info
    • chore(static_centerline_generator): vehicle info
    • chore(obstacle_cruise_planner): vehicle info
    • chore(obstacle_velocity_limiter): vehicle info
    • chore(mission_planner): vehicle info
    • chore(obstacle_stop_planner): vehicle info
    • chore(planning_validator): vehicle info
    • chore(surround_obstacle_checker): vehicle info
    • chore(goal_planner): vehicle info
    • chore(start_planner): vehicle info
    • chore(control_performance_analysis): vehicle info
    • chore(lane_departure_checker): vehicle info
    • chore(predicted_path_checker): vehicle info
    • chore(vehicle_cmd_gate): vehicle info
    • chore(obstacle_collision_checker): vehicle info
    • chore(operation_mode_transition_manager): vehicle info
    • chore(mpc): vehicle info
    • chore(control): vehicle info
    • chore(common): vehicle info
    • chore(perception): vehicle info
    • chore(evaluator): vehicle info
    • chore(freespace): vehicle info
    • chore(planning): vehicle info
    • chore(vehicle): vehicle info
    • chore(simulator): vehicle info
    • chore(launch): vehicle info
    • chore(system): vehicle info
    • chore(sensing): vehicle info

    * fix(autoware_joy_controller): remove unused deps ---------

  • fix(perception_online_evaluator): add metric_value not only stat (#7100)(#7118) (revert of revert) (#7167) * Revert "fix(perception_online_evaluator): revert "add metric_value not only s…" This reverts commit d827b1bd1f4bbacf0333eb14a62ef42e56caef25.
    • Update evaluator/perception_online_evaluator/include/perception_online_evaluator/perception_online_evaluator_node.hpp
    • Update evaluator/perception_online_evaluator/src/perception_online_evaluator_node.cpp

    * use emplace back ---------Co-authored-by: Kotaro Uetake <<60615504+ktro2828@users.noreply.github.com>>

  • feat!: replace autoware_auto_msgs with autoware_msgs for evaluator modules (#7241) Co-authored-by: Cynthia Liu <<cynthia.liu@autocore.ai>> Co-authored-by: NorahXiong <<norah.xiong@autocore.ai>> Co-authored-by: beginningfan <<beginning.fan@autocore.ai>>
  • fix(perception_online_evaluator): revert "add metric_value not only stat (#7100)" (#7118)
  • feat(perception_online_evaluator): add metric_value not only stat (#7100)
  • fix(perception_online_evaluator): fix range resolution (#7115)
  • chore(glog): add initialization check (#6792)
  • fix(perception_online_evaluator): fix bug of constStatement (#6922)
  • feat(perception_online_evaluator): imporve yaw rate metrics considering flip (#6881)
    • feat(perception_online_evaluator): imporve yaw rate metrics considering flip

    * fix test ---------

  • feat(perception_evaluator): counts objects within detection range (#6848) * feat(perception_evaluator): counts objects within detection range detection counter add enable option and refactoring fix update document readme clean up
    • fix from review

    * use $ fix * fix include ---------

  • docs(perception_online_evaluator): update metrics explanation (#6819)
  • feat(perception_online_evaluator): better waitForDummyNode (#6827)
  • feat(perception_online_evaluator): add predicted path variance (#6793)
    • feat(perception_online_evaluator): add predicted path variance
    • add unit test
    • update readme

    * pre commit ---------

  • feat(perception_online_evaluator): ignore reversal of orientation from yaw_rate calculation (#6748)
  • docs(perception_online_evaluator): add description about yaw rate evaluation (#6737)
  • Contributors: Esteve Fernandez, Fumiya Watanabe, Kosuke Takeuchi, Kyoichi Sugahara, Nagi70, Ryohsuke Mitsudome, Ryuta Kambe, Satoshi OTA, Takamasa Horibe, Takayuki Murooka, Yutaka Kondo, kobayu858

0.26.0 (2024-04-03)

  • feat(perception_online_evaluator): extract moving object for deviation check (#6682) fix test
  • feat(perception_online_evaluator): unify debug markers instead of separating for each object (#6681)
    • feat(perception_online_evaluator): unify debug markers instead of separating for each object

    * fix for

  • feat(perception_online_evaluator): add yaw rate metrics for stopped object (#6667) * feat(perception_online_evaluator): add yaw rate metrics for stopped object add add test * feat: add stopped vel parameter ---------

  • fix(perception_online_evaluator): fix build error (#6595)
  • build(perception_online_evaluator): add lanelet_extension dependency (#6592)
  • feat(perception_online_evaluator): publish metrics of each object class (#6556)
  • feat(perception_online_evaluator): add perception_online_evaluator (#6493) * feat(perception_evaluator): add perception_evaluator tmp update add add add update clean up change time horizon
    • fix build werror
    • fix topic name
    • clean up
    • rename to perception_online_evaluator
    • refactor: remove timer
    • feat: add test

    * fix: ci check ---------

  • Contributors: Esteve Fernandez, Kosuke Takeuchi, Satoshi OTA

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Launch files

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_perception_online_evaluator at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.