No version for distro humble. Known supported distros are highlighted in the buttons above.
No version for distro jazzy. Known supported distros are highlighted in the buttons above.
No version for distro rolling. Known supported distros are highlighted in the buttons above.

autoware_lidar_centerpoint package from autoware_universe repo

autoware_adapi_specs autoware_agnocast_wrapper autoware_auto_common autoware_component_interface_specs_universe autoware_component_interface_tools autoware_component_interface_utils autoware_cuda_dependency_meta autoware_fake_test_node autoware_glog_component autoware_goal_distance_calculator autoware_grid_map_utils autoware_path_distance_calculator autoware_polar_grid autoware_time_utils autoware_traffic_light_recognition_marker_publisher autoware_traffic_light_utils autoware_universe_utils tier4_api_utils autoware_autonomous_emergency_braking autoware_collision_detector autoware_control_performance_analysis autoware_control_validator autoware_external_cmd_selector autoware_joy_controller autoware_lane_departure_checker autoware_mpc_lateral_controller autoware_obstacle_collision_checker autoware_operation_mode_transition_manager autoware_pid_longitudinal_controller autoware_predicted_path_checker autoware_pure_pursuit autoware_shift_decider autoware_smart_mpc_trajectory_follower autoware_trajectory_follower_base autoware_trajectory_follower_node autoware_vehicle_cmd_gate autoware_control_evaluator autoware_kinematic_evaluator autoware_localization_evaluator autoware_perception_online_evaluator autoware_planning_evaluator autoware_scenario_simulator_v2_adapter tier4_autoware_api_launch tier4_control_launch tier4_localization_launch tier4_map_launch tier4_perception_launch tier4_planning_launch tier4_sensing_launch tier4_simulator_launch tier4_system_launch tier4_vehicle_launch autoware_geo_pose_projector autoware_gyro_odometer autoware_ar_tag_based_localizer autoware_landmark_manager autoware_lidar_marker_localizer autoware_localization_error_monitor autoware_ndt_scan_matcher autoware_pose2twist autoware_pose_covariance_modifier autoware_pose_estimator_arbiter autoware_pose_initializer autoware_pose_instability_detector yabloc_common yabloc_image_processing yabloc_monitor yabloc_particle_filter yabloc_pose_initializer autoware_lanelet2_map_visualizer autoware_map_height_fitter autoware_map_tf_generator autoware_bytetrack autoware_cluster_merger autoware_compare_map_segmentation autoware_crosswalk_traffic_light_estimator autoware_detected_object_feature_remover autoware_detected_object_validation autoware_detection_by_tracker autoware_elevation_map_loader autoware_euclidean_cluster autoware_ground_segmentation autoware_image_projection_based_fusion autoware_lidar_apollo_instance_segmentation autoware_lidar_centerpoint autoware_lidar_transfusion autoware_map_based_prediction autoware_multi_object_tracker autoware_object_merger autoware_object_range_splitter autoware_object_velocity_splitter autoware_occupancy_grid_map_outlier_filter autoware_probabilistic_occupancy_grid_map autoware_radar_crossing_objects_noise_filter autoware_radar_fusion_to_detected_object autoware_radar_object_clustering autoware_radar_object_tracker autoware_radar_tracks_msgs_converter autoware_raindrop_cluster_filter autoware_shape_estimation autoware_simple_object_merger autoware_tensorrt_classifier autoware_tensorrt_common autoware_tensorrt_yolox autoware_tracking_object_merger autoware_traffic_light_arbiter autoware_traffic_light_category_merger autoware_traffic_light_classifier autoware_traffic_light_fine_detector autoware_traffic_light_map_based_detector autoware_traffic_light_multi_camera_fusion autoware_traffic_light_occlusion_predictor autoware_traffic_light_selector autoware_traffic_light_visualization perception_utils autoware_costmap_generator autoware_external_velocity_limit_selector autoware_freespace_planner autoware_freespace_planning_algorithms autoware_mission_planner_universe autoware_obstacle_cruise_planner autoware_obstacle_stop_planner autoware_path_optimizer autoware_path_smoother autoware_planning_validator autoware_remaining_distance_time_calculator autoware_rtc_interface autoware_scenario_selector autoware_surround_obstacle_checker autoware_behavior_path_avoidance_by_lane_change_module autoware_behavior_path_dynamic_obstacle_avoidance_module autoware_behavior_path_external_request_lane_change_module autoware_behavior_path_goal_planner_module autoware_behavior_path_lane_change_module autoware_behavior_path_planner autoware_behavior_path_planner_common autoware_behavior_path_sampling_planner_module autoware_behavior_path_side_shift_module autoware_behavior_path_start_planner_module autoware_behavior_path_static_obstacle_avoidance_module autoware_behavior_velocity_blind_spot_module autoware_behavior_velocity_crosswalk_module autoware_behavior_velocity_detection_area_module autoware_behavior_velocity_intersection_module autoware_behavior_velocity_no_drivable_lane_module autoware_behavior_velocity_no_stopping_area_module autoware_behavior_velocity_occlusion_spot_module autoware_behavior_velocity_rtc_interface autoware_behavior_velocity_run_out_module autoware_behavior_velocity_speed_bump_module autoware_behavior_velocity_template_module autoware_behavior_velocity_traffic_light_module autoware_behavior_velocity_virtual_traffic_light_module autoware_behavior_velocity_walkway_module autoware_motion_velocity_dynamic_obstacle_stop_module autoware_motion_velocity_obstacle_cruise_module autoware_motion_velocity_obstacle_slow_down_module autoware_motion_velocity_obstacle_velocity_limiter_module autoware_motion_velocity_out_of_lane_module autoware_bezier_sampler autoware_frenet_planner autoware_path_sampler autoware_sampler_common autoware_cuda_pointcloud_preprocessor autoware_cuda_utils autoware_image_diagnostics autoware_image_transport_decompressor autoware_imu_corrector autoware_pcl_extensions autoware_pointcloud_preprocessor autoware_radar_scan_to_pointcloud2 autoware_radar_static_pointcloud_filter autoware_radar_threshold_filter autoware_radar_tracks_noise_filter autoware_livox_tag_filter autoware_carla_interface autoware_dummy_perception_publisher autoware_fault_injection autoware_learning_based_vehicle_model autoware_simple_planning_simulator autoware_vehicle_door_simulator tier4_dummy_object_rviz_plugin autoware_bluetooth_monitor autoware_component_monitor autoware_component_state_monitor autoware_default_adapi autoware_adapi_adaptors autoware_adapi_visualizers autoware_automatic_pose_initializer autoware_diagnostic_graph_aggregator autoware_diagnostic_graph_utils autoware_dummy_diag_publisher autoware_dummy_infrastructure autoware_duplicated_node_checker autoware_hazard_status_converter autoware_mrm_comfortable_stop_operator autoware_mrm_emergency_stop_operator autoware_mrm_handler autoware_processing_time_checker autoware_system_diagnostic_monitor autoware_system_monitor autoware_topic_relay_controller autoware_topic_state_monitor autoware_velodyne_monitor reaction_analyzer autoware_accel_brake_map_calibrator autoware_external_cmd_converter autoware_raw_vehicle_cmd_converter autoware_steer_offset_estimator autoware_bag_time_manager_rviz_plugin autoware_mission_details_overlay_rviz_plugin autoware_overlay_rviz_plugin autoware_string_stamped_rviz_plugin autoware_perception_rviz_plugin tier4_adapi_rviz_plugin tier4_camera_view_rviz_plugin tier4_datetime_rviz_plugin tier4_localization_rviz_plugin tier4_planning_factor_rviz_plugin tier4_planning_rviz_plugin tier4_state_rviz_plugin tier4_system_rviz_plugin tier4_traffic_light_rviz_plugin tier4_vehicle_rviz_plugin

Package Summary

Tags No category tags.
Version 0.43.0
License Apache License 2.0
Build type AMENT_CMAKE
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/autowarefoundation/autoware_universe.git
VCS Type git
VCS Version main
Last Updated 2025-04-04
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

The autoware_lidar_centerpoint package

Additional Links

No additional links.

Maintainers

  • Kenzo Lobos-Tsunekawa
  • Amadeusz Szymko
  • Satoshi Tanaka

Authors

No additional authors.

autoware_lidar_centerpoint

Purpose

autoware_lidar_centerpoint is a package for detecting dynamic 3D objects.

Inner-workings / Algorithms

In this implementation, CenterPoint [1] uses a PointPillars-based [2] network to inference with TensorRT.

We trained the models using https://github.com/open-mmlab/mmdetection3d.

Inputs / Outputs

Input

Name Type Description
~/input/pointcloud sensor_msgs::msg::PointCloud2 input pointcloud

Output

Name Type Description
~/output/objects autoware_perception_msgs::msg::DetectedObjects detected objects
debug/cyclic_time_ms autoware_internal_debug_msgs::msg::Float64Stamped cyclic time (msg)
debug/processing_time_ms autoware_internal_debug_msgs::msg::Float64Stamped processing time (ms)

Parameters

ML Model Parameters

Note that these parameters are associated with ONNX file, predefined during the training phase. Be careful to change ONNX file as well when changing this parameter. Also, whenever you update the ONNX file, do NOT forget to check these values.

Name Type Default Value Description
model_params.class_names list[string] [“CAR”, “TRUCK”, “BUS”, “BICYCLE”, “PEDESTRIAN”] list of class names for model outputs
model_params.point_feature_size int 4 number of features per point in the point cloud
model_params.max_voxel_size int 40000 maximum number of voxels
model_params.point_cloud_range list[double] [-76.8, -76.8, -4.0, 76.8, 76.8, 6.0] detection range [min_x, min_y, min_z, max_x, max_y, max_z] [m]
model_params.voxel_size list[double] [0.32, 0.32, 10.0] size of each voxel [x, y, z] [m]
model_params.downsample_factor int 1 downsample factor for coordinates
model_params.encoder_in_feature_size int 9 number of input features to the encoder
model_params.has_variance bool false true if the model outputs pose variance as well as pose for each bbox
model_params.has_twist bool false true if the model outputs velocity as well as pose for each bbox

Core Parameters

Name Type Default Value Description
encoder_onnx_path string "" path to VoxelFeatureEncoder ONNX file
encoder_engine_path string "" path to VoxelFeatureEncoder TensorRT Engine file
head_onnx_path string "" path to DetectionHead ONNX file
head_engine_path string "" path to DetectionHead TensorRT Engine file
build_only bool false shutdown the node after TensorRT engine file is built
trt_precision string fp16 TensorRT inference precision: fp32 or fp16
post_process_params.score_threshold double 0.4 detected objects with score less than threshold are ignored
post_process_params.yaw_norm_thresholds list[double] [0.3, 0.3, 0.3, 0.3, 0.0] An array of distance threshold values of norm of yaw [rad].
post_process_params.iou_nms_search_distance_2d double - If two objects are farther than the value, NMS isn’t applied.
post_process_params.iou_nms_threshold double - IoU threshold for the IoU-based Non Maximum Suppression
post_process_params.has_twist boolean false Indicates whether the model outputs twist value.
densification_params.world_frame_id string map the world frame id to fuse multi-frame pointcloud
densification_params.num_past_frames int 1 the number of past frames to fuse with the current frame

The build_only option

The autoware_lidar_centerpoint node has build_only option to build the TensorRT engine file from the ONNX file. Although it is preferred to move all the ROS parameters in .param.yaml file in Autoware Universe, the build_only option is not moved to the .param.yaml file for now, because it may be used as a flag to execute the build as a pre-task. You can execute with the following command:

ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml model_name:=centerpoint_tiny model_path:=/home/autoware/autoware_data/lidar_centerpoint model_param_path:=$(ros2 pkg prefix autoware_lidar_centerpoint --share)/config/centerpoint_tiny.param.yaml build_only:=true

Assumptions / Known limits

  • The object.existence_probability is stored the value of classification confidence of a DNN, not probability.

Trained Models

You can download the onnx format of trained models by clicking on the links below.

Centerpoint was trained in nuScenes (~28k lidar frames) [8] and TIER IV’s internal database (~11k lidar frames) for 60 epochs. Centerpoint tiny was trained in Argoverse 2 (~110k lidar frames) [9] and TIER IV’s internal database (~11k lidar frames) for 20 epochs.

Training CenterPoint Model and Deploying to the Autoware

Overview

This guide provides instructions on training a CenterPoint model using the mmdetection3d repository and seamlessly deploying it within Autoware.

Installation

Install prerequisites

Step 1. Download and install Miniconda from the official website.

Step 2. Create a conda virtual environment and activate it

conda create --name train-centerpoint python=3.8 -y
conda activate train-centerpoint

Step 3. Install PyTorch

Please ensure you have PyTorch installed, and compatible with CUDA 11.6, as it is a requirement for current Autoware.

conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.6 -c pytorch -c nvidia

Install mmdetection3d

Step 1. Install MMEngine, MMCV, and MMDetection using MIM

pip install -U openmim
mim install mmengine
mim install 'mmcv>=2.0.0rc4'
mim install 'mmdet>=3.0.0rc5, <3.3.0'

Step 2. Install mmdetection3d forked repository

Introduced several valuable enhancements in our fork of the mmdetection3d repository. Notably, we’ve made the PointPillar z voxel feature input optional to maintain compatibility with the original paper. In addition, we’ve integrated a PyTorch to ONNX converter and a T4 format reader for added functionality.

git clone https://github.com/autowarefoundation/mmdetection3d.git
cd mmdetection3d
pip install -v -e .

Use Training Repository with Docker

Alternatively, you can use Docker to run the mmdetection3d repository. We provide a Dockerfile to build a Docker image with the mmdetection3d repository and its dependencies.

Clone fork of the mmdetection3d repository

git clone https://github.com/autowarefoundation/mmdetection3d.git

Build the Docker image by running the following command:

cd mmdetection3d
docker build -t mmdetection3d -f docker/Dockerfile .

Run the Docker container:

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmdetection3d/data mmdetection3d

Preparing NuScenes dataset for training

Step 1. Download the NuScenes dataset from the official website and extract the dataset to a folder of your choice.

Note: The NuScenes dataset is large and requires significant disk space. Ensure you have enough storage available before proceeding.

Step 2. Create a symbolic link to the dataset folder

ln -s /path/to/nuscenes/dataset/ /path/to/mmdetection3d/data/nuscenes/

Step 3. Prepare the NuScenes data by running:

cd mmdetection3d
python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes

Training CenterPoint with NuScenes Dataset

Prepare the config file

The configuration file that illustrates how to train the CenterPoint model with the NuScenes dataset is located at mmdetection3d/projects/AutowareCenterPoint/configs. This configuration file is a derived version of this centerpoint configuration file from mmdetection3D. In this custom configuration, the use_voxel_center_z parameter is set as False to deactivate the z coordinate of the voxel center, aligning with the original paper’s specifications and making the model compatible with Autoware. Additionally, the filter size is set as [32, 32].

The CenterPoint model can be tailored to your specific requirements by modifying various parameters within the configuration file. This includes adjustments related to preprocessing operations, training, testing, model architecture, dataset, optimizer, learning rate scheduler, and more.

Start training

python tools/train.py projects/AutowareCenterPoint/configs/centerpoint_custom.py --work-dir ./work_dirs/centerpoint_custom

Evaluation of the trained model

For evaluation purposes, we have included a sample dataset captured from the vehicle which consists of the following LiDAR sensors: 1 x Velodyne VLS128, 4 x Velodyne VLP16, and 1 x Robosense RS Bpearl. This dataset comprises 600 LiDAR frames and encompasses 5 distinct classes, 6905 cars, 3951 pedestrians, 75 cyclists, 162 buses, and 326 trucks 3D annotation. In the sample dataset, frames are annotated as 2 frames for each second. You can employ this dataset for a wide range of purposes, including training, evaluation, and fine-tuning of models. It is organized in the T4 format.

Download the sample dataset
wget https://autoware-files.s3.us-west-2.amazonaws.com/dataset/lidar_detection_sample_dataset.tar.gz
#Extract the dataset to a folder of your choice
tar -xvf lidar_detection_sample_dataset.tar.gz
#Create a symbolic link to the dataset folder
ln -s /PATH/TO/DATASET/ /PATH/TO/mmdetection3d/data/tier4_dataset/

Prepare dataset and evaluate trained model

Create .pkl files for training, evaluation, and testing.

The dataset was formatted according to T4Dataset specifications, with ‘sample_dataset’ designated as one of its versions.

python tools/create_data.py T4Dataset --root-path data/sample_dataset/ --out-dir data/sample_dataset/ --extra-tag T4Dataset --version sample_dataset --annotation-hz 2

Run evaluation

python tools/test.py projects/AutowareCenterPoint/configs/centerpoint_custom_test.py /PATH/OF/THE/CHECKPOINT  --task lidar_det

Evaluation results could be relatively low because of the e to variations in sensor modalities between the sample dataset and the training dataset. The model’s training parameters are originally tailored to the NuScenes dataset, which employs a single lidar sensor positioned atop the vehicle. In contrast, the provided sample dataset comprises concatenated point clouds positioned at the base link location of the vehicle.

Deploying CenterPoint model to Autoware

Convert CenterPoint PyTorch model to ONNX Format

The autoware_lidar_centerpoint implementation requires two ONNX models as input the voxel encoder and the backbone-neck-head of the CenterPoint model, other aspects of the network, such as preprocessing operations, are implemented externally. Under the fork of the mmdetection3d repository, we have included a script that converts the CenterPoint model to Autoware compatible ONNX format. You can find it in mmdetection3d/projects/AutowareCenterPoint file.

python projects/AutowareCenterPoint/centerpoint_onnx_converter.py --cfg projects/AutowareCenterPoint/configs/centerpoint_custom.py --ckpt work_dirs/centerpoint_custom/YOUR_BEST_MODEL.pth --work-dir ./work_dirs/onnx_models

Create the config file for the custom model

Create a new config file named centerpoint_custom.param.yaml under the config file directory of the autoware_lidar_centerpoint node. Sets the parameters of the config file like point_cloud_range, point_feature_size, voxel_size, etc. according to the training config file.

/**:
  ros__parameters:
    class_names: ["CAR", "TRUCK", "BUS", "BICYCLE", "PEDESTRIAN"]
    point_feature_size: 4
    max_voxel_size: 40000
    point_cloud_range: [-51.2, -51.2, -3.0, 51.2, 51.2, 5.0]
    voxel_size: [0.2, 0.2, 8.0]
    downsample_factor: 1
    encoder_in_feature_size: 9
    # post-process params
    circle_nms_dist_threshold: 0.5
    iou_nms_search_distance_2d: 10.0
    iou_nms_threshold: 0.1
    yaw_norm_thresholds: [0.3, 0.3, 0.3, 0.3, 0.0]

Launch the lidar_centerpoint node

cd /YOUR/AUTOWARE/PATH/Autoware
source install/setup.bash
ros2 launch autoware_lidar_centerpoint lidar_centerpoint.launch.xml  model_name:=centerpoint_custom  model_path:=/PATH/TO/ONNX/FILE/

Changelog

v1 (2022/07/06)

Name URLs Description
centerpoint pts_voxel_encoder
pts_backbone_neck_head
There is a single change due to the limitation in the implementation of this package. num_filters=[32, 32] of PillarFeatureNet
centerpoint_tiny pts_voxel_encoder
pts_backbone_neck_head
The same model as default of v0.

These changes are compared with this configuration.

v0 (2021/12/03)

Name URLs Description
default pts_voxel_encoder
pts_backbone_neck_head
There are two changes from the original CenterPoint architecture. num_filters=[32] of PillarFeatureNet and ds_layer_strides=[2, 2, 2] of RPN

(Optional) Error detection and handling

(Optional) Performance characterization

[1] Yin, Tianwei, Xingyi Zhou, and Philipp Krähenbühl. “Center-based 3d object detection and tracking.” arXiv preprint arXiv:2006.11275 (2020).

[2] Lang, Alex H., et al. “PointPillars: Fast encoders for object detection from point clouds.” Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

[3] https://github.com/tianweiy/CenterPoint

[4] https://github.com/open-mmlab/mmdetection3d

[5] https://github.com/open-mmlab/OpenPCDet

[6] https://github.com/yukkysaito/autoware_perception

[7] https://github.com/NVIDIA-AI-IOT/CUDA-PointPillars

[8] https://www.nuscenes.org/nuscenes

[9] https://www.argoverse.org/av2.html

(Optional) Future extensions / Unimplemented parts

Acknowledgment: deepen.ai’s 3D Annotation Tools Contribution

Special thanks to Deepen AI for providing their 3D Annotation tools, which have been instrumental in creating our sample dataset.

The nuScenes dataset is released publicly for non-commercial use under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License. Additional Terms of Use can be found at https://www.nuscenes.org/terms-of-use. To inquire about a commercial license please contact nuscenes@motional.com.

CHANGELOG

Changelog for package autoware_lidar_centerpoint

0.43.0 (2025-03-21)

  • Merge remote-tracking branch 'origin/main' into chore/bump-version-0.43
  • chore: rename from [autoware.universe]{.title-ref} to [autoware_universe]{.title-ref} (#10306)
  • refactor: add autoware_cuda_dependency_meta (#10073)
  • Contributors: Esteve Fernandez, Hayato Mizushima, Yutaka Kondo

0.42.0 (2025-03-03)

  • Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
  • feat(autoware_utils): replace autoware_universe_utils with autoware_utils (#10191)
  • chore(autoware_lidar_centerpoint): add maintainer (#10076)
  • Contributors: Amadeusz Szymko, Fumiya Watanabe, 心刚

0.41.2 (2025-02-19)

  • chore: bump version to 0.41.1 (#10088)
  • Contributors: Ryohsuke Mitsudome

0.41.1 (2025-02-10)

0.41.0 (2025-01-29)

  • Merge remote-tracking branch 'origin/main' into tmp/bot/bump_version_base
  • refactor(autoware_tensorrt_common): multi-TensorRT compatibility & tensorrt_common as unified lib for all perception components (#9762)
    • refactor(autoware_tensorrt_common): multi-TensorRT compatibility & tensorrt_common as unified lib for all perception components
    • style(pre-commit): autofix
    • style(autoware_tensorrt_common): linting

    * style(autoware_lidar_centerpoint): typo Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>> * docs(autoware_tensorrt_common): grammar Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>

    • fix(autoware_lidar_transfusion): reuse cast variable
    • fix(autoware_tensorrt_common): remove deprecated inference API

    * style(autoware_tensorrt_common): grammar Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>> * style(autoware_tensorrt_common): grammar Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>

    • fix(autoware_tensorrt_common): const pointer
    • fix(autoware_tensorrt_common): remove unused method declaration
    • style(pre-commit): autofix

    * refactor(autoware_tensorrt_common): readability Co-authored-by: Kotaro Uetake <<60615504+ktro2828@users.noreply.github.com>>

    • fix(autoware_tensorrt_common): return if layer not registered

    * refactor(autoware_tensorrt_common): readability Co-authored-by: Kotaro Uetake <<60615504+ktro2828@users.noreply.github.com>>

    • fix(autoware_tensorrt_common): rename struct

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>> Co-authored-by: Kotaro Uetake <<60615504+ktro2828@users.noreply.github.com>>

  • feat(lidar_centerpoint, pointpainting): add diag publisher for max voxel size (#9720)
  • fix(autoware_lidar_centerpoint): fixed rounding errors that caused illegal memory access (#9795) fix: fixed rounding errors that caused illegal memory address
  • feat(autoware_lidar_centerpoint): process front voxels first (#9608)
    • feat: optimize voxel indexing in preprocess_kernel.cu
    • fix: remove redundant index check

    * fix: modify voxel index for better memory access ---------

  • Contributors: Amadeusz Szymko, Fumiya Watanabe, Kenzo Lobos Tsunekawa, Taekjin LEE, kminoda

0.40.0 (2024-12-12)

  • Merge branch 'main' into release-0.40.0
  • Revert "chore(package.xml): bump version to 0.39.0 (#9587)" This reverts commit c9f0f2688c57b0f657f5c1f28f036a970682e7f5.
  • fix(lidar_centerpoint): non-maximum suppression target decision logic (#9595)
    • refactor(lidar_centerpoint): optimize non-maximum suppression search distance calculation
    • feat(lidar_centerpoint): do not suppress if one side of the object is pedestrian
    • style(pre-commit): autofix
    • refactor(lidar_centerpoint): remove unused variables

    * refactor: remove unused variables fix: implement non-maximum suppression logic to the transfusion refactor: remove unused parameter iou_nms_target_class_names Revert "fix: implement non-maximum suppression logic to the transfusion" This reverts commit b8017fc366ec7d67234445ef5869f8beca9b6f45. fix: revert transfusion modification ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com>

  • fix: fix ticket links in CHANGELOG.rst (#9588)
  • chore(package.xml): bump version to 0.39.0 (#9587)
    • chore(package.xml): bump version to 0.39.0
    • fix: fix ticket links in CHANGELOG.rst

    * fix: remove unnecessary diff ---------Co-authored-by: Yutaka Kondo <<yutaka.kondo@youtalk.jp>>

  • fix: fix ticket links in CHANGELOG.rst (#9588)
  • fix(cpplint): include what you use - perception (#9569)
  • fix(autoware_lidar_centerpoint): fix clang-diagnostic-delete-abstract-non-virtual-dtor (#9515)
  • feat(autoware_lidar_centerpoint): added a check to notify if we are dropping pillars (#9488)
    • feat: added a check to notify if we are dropping pillars
    • chore: updated text

    * chore: throttled the message ---------

  • fix(autoware_lidar_centerpoint): fix clang-diagnostic-unused-private-field (#9471)
  • 0.39.0
  • update changelog
  • fix: fix ticket links to point to https://github.com/autowarefoundation/autoware_universe (#9304)
  • fix: fix ticket links to point to https://github.com/autowarefoundation/autoware_universe (#9304)
  • chore(package.xml): bump version to 0.38.0 (#9266) (#9284)
    • unify package.xml version to 0.37.0
    • remove system_monitor/CHANGELOG.rst
    • add changelog

    * 0.38.0

  • Contributors: Esteve Fernandez, Fumiya Watanabe, Kenzo Lobos Tsunekawa, M. Fatih Cırıt, Ryohsuke Mitsudome, Taekjin LEE, Yutaka Kondo, kobayu858

0.39.0 (2024-11-25)

0.38.0 (2024-11-08)

  • unify package.xml version to 0.37.0
  • refactor(tensorrt_common)!: fix namespace, directory structure & move to perception namespace (#9099)
    • refactor(tensorrt_common)!: fix namespace, directory structure & move to perception namespace
    • refactor(tensorrt_common): directory structure
    • style(pre-commit): autofix

    * fix(tensorrt_common): correct package name for logging ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>

  • refactor(object_recognition_utils): add autoware prefix to object_recognition_utils (#8946)
  • fix(autoware_lidar_centerpoint): fix twist covariance orientation (#8996) * fix(autoware_lidar_centerpoint): fix covariance converter considering the twist covariance matrix is based on the object coordinate fix style * fix: update test of box3DToDetectedObject function ---------

  • fix(autoware_lidar_centerpoint): convert object's velocity to follow its definition (#8980)
    • fix: convert object's velocity to follow its definition in box3DToDetectedObject function

    * Update perception/autoware_lidar_centerpoint/lib/ros_utils.cpp Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>> ---------Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>

  • feat(autoware_lidar_centerpoint): shuffled points before feeding them to the model (#8814)
    • feat: shuffling points before feeding them into the model to achieve uniform sampling into the voxels

    * Update perception/autoware_lidar_centerpoint/src/node.cpp Co-authored-by: kminoda <<44218668+kminoda@users.noreply.github.com>> * Update perception/autoware_lidar_centerpoint/src/node.cpp Co-authored-by: kminoda <<44218668+kminoda@users.noreply.github.com>> * Update perception/autoware_lidar_centerpoint/lib/centerpoint_trt.cpp Co-authored-by: kminoda <<44218668+kminoda@users.noreply.github.com>> * Update perception/autoware_lidar_centerpoint/include/autoware/lidar_centerpoint/centerpoint_config.hpp Co-authored-by: kminoda <<44218668+kminoda@users.noreply.github.com>> ---------Co-authored-by: kminoda <<44218668+kminoda@users.noreply.github.com>>

  • refactor(autoware_lidar_centerpoint): use std::size_t instead of size_t (#8820)
    • refactor(autoware_lidar_centerpoint): use std::size_t instead of size_t

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com>

  • chore(autoware_lidar_centerpoint): add centerpoint sigma parameter (#8731) add centerpoint sigma parameter
  • fix(autoware_lidar_centerpoint): fix unusedFunction (#8572) fix:unusedFunction
  • fix(autoware_lidar_centerpoint): place device vector in CUDA device system (#8272)
  • docs(centerpoint): add description for ml package params (#8187)
  • chore(autoware_lidar_centerpoint): updated tests (#8158) chore: updated centerpoin tests. they are currently commented out but they were not compiling (forgot to update them when I added the new cloud capacity parameter)
  • refactor(lidar_centerpoint)!: fix namespace and directory structure (#8049)
    • add prefix in lidar_centerpoint
    • add .gitignore
    • change include package name in image_projection_based fusion
    • fix
    • change in codeowner
    • delete package
    • style(pre-commit): autofix
    • style(pre-commit): autofix
    • solve conflict too
    • fix include file
    • fix typo in launch file
    • add prefix in README
    • fix bugs by conflict
    • style(pre-commit): autofix
    • change namespace from to

    * style(pre-commit): autofix ---------Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]\@users.noreply.github.com> Co-authored-by: Kenzo Lobos Tsunekawa <<kenzo.lobos@tier4.jp>>

  • Contributors: Amadeusz Szymko, Esteve Fernandez, Kenzo Lobos Tsunekawa, Masato Saeki, Taekjin LEE, Yoshi Ri, Yutaka Kondo, kminoda, kobayu858

0.26.0 (2024-04-03)

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Launch files

  • launch/lidar_centerpoint.launch.xml
      • input/pointcloud [default: /sensing/lidar/pointcloud]
      • output/objects [default: objects]
      • data_path [default: $(env HOME)/autoware_data]
      • model_name [default: centerpoint_tiny]
      • model_path [default: $(var data_path)/lidar_centerpoint]
      • model_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/$(var model_name).param.yaml]
      • ml_package_param_path [default: $(var model_path)/$(var model_name)_ml_package.param.yaml]
      • class_remapper_param_path [default: $(var model_path)/detection_class_remapper.param.yaml]
      • common_param_path [default: $(find-pkg-share autoware_lidar_centerpoint)/config/centerpoint_common.param.yaml]
      • build_only [default: false]
      • use_pointcloud_container [default: false]
      • pointcloud_container_name [default: pointcloud_container]

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged autoware_lidar_centerpoint at Robotics Stack Exchange

No version for distro noetic. Known supported distros are highlighted in the buttons above.
No version for distro ardent. Known supported distros are highlighted in the buttons above.
No version for distro bouncy. Known supported distros are highlighted in the buttons above.
No version for distro crystal. Known supported distros are highlighted in the buttons above.
No version for distro eloquent. Known supported distros are highlighted in the buttons above.
No version for distro dashing. Known supported distros are highlighted in the buttons above.
No version for distro galactic. Known supported distros are highlighted in the buttons above.
No version for distro foxy. Known supported distros are highlighted in the buttons above.
No version for distro iron. Known supported distros are highlighted in the buttons above.
No version for distro lunar. Known supported distros are highlighted in the buttons above.
No version for distro jade. Known supported distros are highlighted in the buttons above.
No version for distro indigo. Known supported distros are highlighted in the buttons above.
No version for distro hydro. Known supported distros are highlighted in the buttons above.
No version for distro kinetic. Known supported distros are highlighted in the buttons above.
No version for distro melodic. Known supported distros are highlighted in the buttons above.